

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-07/0285 of 03/12/2015

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	Hold Downs Post Bases				
Product family to which the above construction product belongs:	Three-dimensional nailing plate (timber to timber and timber to concrete/steel hold downs and post bases)				
Manufacturer:	SIMPSON STRONG-TIE A/S Hedegaardsvej 4 – 11, Boulstrup DK-8300 Odder Tel. +45 87 81 74 00 Fax +45 87 81 74 09				
Manufacturing plant:	Simpson Strong-Tie A/S Hedegaards vej 4-11, Boulstrup 8300 Odder Denmark	Simpson Strong-Tie 5151 S. Airport Way Stockton CA 95206 USA	Simpson Strong-Tie 2600 Internatio- nal Street Columbus, OH 43228 USA	Simpson Strong-Tie ZAC des Quatre Chemins 85400 Sainte Gemme La Plaine France	Simpson Strong-Tie Winchester Road Cardinal Point Tamworth Staffordshire B78 3HG United Kingdom
This European Technical Assessment contains:	128 pages including 4 annexes which form an integral part of the document				
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	Guideline for European Technical Approval (ETAG) No. 015 Three Dimensional Nailing Plates, April 2013, used as European Assessment Document (EAD).				
This version replaces:	The ETA wit and expiry o			issued on 20	13-04-30

INDEX

II SPECIIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT	5
1 TECHNICAL DESCRIPTION OF PRODUCT AND INTENDED USE	5
2 SPECIFICATION OF THE INTENDED USE IN ACCORDANCE WITH THE APPLICABLE EAD	
3 PERFORMANCE OF THE PRODUCT AND REFERENCES TO THE METHODS USED FOR ITS ASSESSMENT	7
3.1 Mechanical resistance and stability*) (BWR1)	7
3.2 Safety in case of fire (BWR2)	7
3.3 Hygiene, health and the environment (BWR3)	7
3.7 Sustainable use of natural resources (BWR7)	7
3.8 General aspects related to the performance of the product	7
3.9 Safety principles and partial factors	8
3.10 Mechanical resistance and stability	8
3.11 Aspects related to the performance of the product	
3.12 General aspects related to the fitness for use of the product	9
4 ATTESTATION AND VERIFICATION OF CONSTANCY OF PERFORMANCE (AVCP)	10
4.1 AVCP system	
5 TECHNICAL DETAILS NECESSARY FOR THE IMPLEMENTATION OF THE AVCP SYSTEM, AS FORESEE APPLICABLE EAD	
ANNEX A: REVISION HISTORY	11
TABLE WITH THE PRODUCT NAMES AND ALTERNATIVE NAMES / HOLD DOWNS	11
TABLE WITH THE PRODUCT NAMES AND ALTERNATIVE NAMES / HOLD DOWNS TABLE WITH THE PRODUCT NAMES AND ALTERNATIVE NAMES / POST BASES	
ANNEX B TYPICAL INSTALLATION	14
B1 TYPICAL INSTALLATION POST BASES	14
B2 TYPICAL INSTALLATION HOLD DOWN	
ANNEX C CHARACTERISTIC LOAD-CARRYING CAPACITY	
C1 DESIGN BASIS - GENERAL	
C2 DEFINITION OF FORCE DIRECTIONS	
C2a Force directions for post bases	
C3 FASTENERS	
ANNEX D PRODUCT DEFINITION AND CAPACITIES	22
POST BASES	22
D1: PPD	22
D1: 11D D2: PI	
D2: 11	
D3: 11 / 11 D	
D5: PIL	
D6: PIS / PISB / PISMAXI / PISBMAXI	
D7: PLS AND PLB	
D8: PVD, PVDB, PVI, PVIB	
D9: PPB AND PPS	
D10: PPA / PBL	
D11: PJPS / PJPB / PJIS / PJIB.	
D12: PUA	
D13: FPB	
D14: PLPP180	
D15: PPR	
D16: PPRIX	
D17: PPRB	
D18: APB100/150	

D19: PPRC	
D20: PBLR	
D21: PPUP	
D22: PPS AND PPSDT	
D23: PPSP	
D24: PPSR320	
D25: PPMINI	
D26: APB7090/100	
D27: PBP60/50	
D28: PBS	
D29: ABE	
D30: CPB AND CPS	
D31: PGS	
D32: CMR AND CMS	
D33: PU / EMBU	
D34: CPT	
D35: ABW	
D36: APR110/150	
D37: PBH75 / PBH120	
HOLD DOWNS	
D60: HTT AND LTT	
D61: HD5A	
D62: HD3B	
D63: AKR	
D64: AH	
D65: HD TENSION TIE	
D66: HD2P BASED ON COMPONENTS	
D67: BETA	
D68: HE ANCHOR	
D69: PROFA	

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The hold downs are one or more pieces, non-welded hold downs. They are intended for timber to timber, timber to concrete or timber to steel connections fastened by a range of nails, screws or bolts.

Post base ABE, PBS and U-shoe are manufactured by pressing of galvanized steel plates. PBP60/50 is manufactured by pressing of raw steel. All other post bases are welded steel connectors.

The upper part e.g. a plate, a U-shaped plate or a vertical plate for embedment into the timber is fastened to the timber member with nails, screws, bolts or dowels.

The lower part of the post base is either a bar, a threaded rod, a tube or a plate for embedment into the support of concrete or a steel plate to be fastened by anchor bolts to the concrete support.

Steel quality, dimensions of the post bases, hole positions and corrosion protection are shown in Annex D.

The post bases and hold downs can also be produced from stainless steel type 1.4401 or type 1.4404 according to EN 10088-2 or a stainless steel with a minimum characteristic yield stress of 235 N/mm² or a minimum ultimate tensile strength of 330 N/mm². Dimensions, hole positions, steel type and typical installations are shown in Annex B and D.

2 Specification of the intended use in accordance with the applicable EAD

The intended use of the post bases and the hold downs is to support timber structures or wood-based structural members to their support, where requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled. Each connection shall be made with one post base.

The static and kinematic behaviour of the timber members or the supports shall be as described in Annex D.

The wood members can be of solid timber, glued laminated timber and similar glued members, or woodbased structural members with a characteristic density from 290 kg/m³ to 420 kg/m³.

This requirement to the material of the wood members can be fulfilled by using the following materials:

- Solid timber classified to C14-C40 according to EN 338 / EN 14081
- Glued members of timber classified to C14-C40 according to EN 338 / EN 14081 when structural adhesives are used.
- Glued laminated timber classified to GL24c or better according to EN 1194 / EN 14080.
- Solid Wood Panels, SWP according to EN 13353.
- Laminated Veneer Lumber LVL according to EN 14374
- Plywood according to EN 636
- Oriented Strand Board, OSB according to EN 300

Annex C states formulas for the characteristic loadcarrying capacity of the post bases and the hold down connections, which depend on the characteristic density of the timber employed.

For some of the connectors Annex D states the loadcarrying capacities of the post bases and the hold down connections for a characteristic density of 350 kg/m³.

For timber or wood based material with a lower characteristic density than 350 kg/m³ the load-carrying capacities shall be reduced by the k_{dens} factor:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)$$

Where ρ_k is the characteristic density of the timber in kg/m³.

For timber or wood based material with a higher characteristic density than 350 kg/m³ the load-carrying capacities shall be taken as that for 350 kg/m³ unless detailed analyses are conducted.

The design of the connections shall be in accordance with Eurocode 5 or a similar national Timber Code. The wood members shall have a thickness which is larger than the penetration depth of the nails into the members.

The hold downs are primarily for use in timber structures subject to the dry, internal conditions defined by service class 1 and 2 of Eurocode 5 and for connections subject to static or quasi-static loading.

The hold downs can also be used in outdoor timber structures, service class 3, when a corrosion protection in accordance with Eurocode 5 is applied, or when stainless steel with similar or better characteristic yield or ultimate strength is employed. The post bases with a zinc coating Z275 according to EN 10346 or G90 according to ASTM A-653 are intended for use in service class 1 and 2 according to EN 1995 (Eurocode 5).

Post bases which are hot dipped galvanized according to EN ISO 1461:1999 with a zinc coating thickness of approximately 55 μ m or made from stainless steel according to EN 10088:2005 or sherardized according to EN 13811:2003 or electroplated zinc according to EN 1403 and 12329:2000 allowing a use in external conditions are intended for use in service class 1,2 and 3 according to EN 1995 (Eurocode 5).

The hold downs may also be used for connections between a timber member and a support made from concrete blocks or similar.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the connectors of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Characteristic	Assessment of characteristic
3.1 Mechanical resistance and stability*) (BWR1)	
Characteristic load-carrying capacity	See Annex D
Stiffness	No performance assessed
Ductility in cyclic testing	No performance assessed
3.2 Safety in case of fire (BWR2)	
Reaction to fire	The post bases are made from steel classified as Euroclass A1 in accordance with EN 13501-1 and EC decision 96/603/EC, amended by EC Decision 2000/605/EC
3.3 Hygiene, health and the environment (BWR3)	
Influence on air quality	The product does not contain/release dangerous substances specified in TR 034, dated March 2012**)
3.7 Sustainable use of natural resources (BWR7)	No Performance Determined
3.8 General aspects related to the performance of the product	The post bases have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service class 1, 2 and 3
Identification *) See additional information in section 3.9 – 3.12.	See Annex A

3 Performance of the product and references to the methods used for its assessment

*) See additional information in section 3.9 - 3.12.

^{**)} In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.9 Safety principles and partial factors

The characteristic load-carrying capacities have been calculated considering different ratios between the partial factors for timber connections and steel cross sections.

According to clause 6.3.5 of EN 1990 (Eurocode – Basis of structural design) the characteristic resistance for structural members that comprise more than one material acting in association should be calculated as

$$R_{d} = \frac{1}{\gamma_{M,1}} R \left\{ \eta_{1} X_{k,1}; \eta_{i} X_{k,i(i>1)} \frac{\gamma_{m,1}}{\gamma_{m,i}}; a_{d} \right\}$$

where $\gamma_{M,1}$ is the global partial factor for material 1 (in this case wood), $\gamma_{m,1}$ is the partial factor on the material and $\gamma_{m,i}$ are material partial factors for the other materials, i.e. the calculations are made with material parameters modified by multiplication by

$$k_{modi} = \gamma_{m,1} / \gamma_{m,i}$$

The characteristic load-carrying capacities have been calculated considering a ratio between the partial factor for timber connections and steel / concrete cross sections

$$k_{madi} = 1,18$$
 for steel yield strength
(EC5: $k_{madi,y} = \frac{1,30}{1,10} = 1,18$)

$$k_{m\alpha li} = 1,0$$
 for steel ultimate strength
(*EC5*: $k_{m\alpha li,u} = \frac{1,30}{1,25} \approx 1,0$)

$$k_{madi} = 0,87$$
 for anchor bolt in concrete
(*EC5*: $k_{madi,c} = \frac{1,30}{1,50} = 0,87$)

For k_{modi} > 1,18 / 1,0 / 0,87 the load-carrying capacities stated in Annex B and D are valid (on the safe side). For k_{modi} <1,18 / 1,0 / 0,87 the load-carrying capacities stated in Annex B have to be multiplied by a factor

$$k_{safe} = \frac{k_{madi,y}}{1,18} or \frac{k_{modi,u}}{1,0} or \frac{k_{modi,c}}{0,87}$$

3.10 Mechanical resistance and stability

See annex D for characteristic load-carrying capacity in the different force directions F_1 to F_5 .

The characteristic capacities of the post bases and the hold downs are determined by calculation assisted by testing as described in the EOTA Guideline 015 clause 5.1.2. They should be used for designs in accordance with Eurocode 5 or a similar national Timber Code.

No performance has been determined in relation to ductility of a joint under cyclic testing. The contribution to the performance of structures in seismic zones, therefore, has not been assessed.

No performance has been determined in relation to the joint's stiffness properties - to be used for the analysis of the serviceability limit state.

Fastener

Connector nails and screws in accordance with ETA-04/0013

The load-carrying capacities of the post bases and the hold downs have been determined based on the use of connector nails 4,0x35, 4,0x40, 4,0x50 or 4,0x60 in accordance with ETA-04/0013. It is allowed to use connector screws 5,0x35, 5,0x40 or 5,0x50 or connector nails 4,2x35, 4,2x50 or 4,2x60 in accordance with ETA-04/0013 with the same or better performance as the 4,0 mm connector nails and still achieve the same load-carrying capacity of the connection.

The capacity of a post base connection and a hold down connection with 4,0x50 connector nails in accordance with ETA-04/0013 can be calculated by linear interpolation between the capacities for 4,0x40 and 4,0x60 connector nails.

Threaded nails in accordance with EN 14592

The design model also allows the use of threaded nails in accordance with EN 14592 with a diameter in the range 4,0 - 4,2 mm and a minimum length of 35 mm, assuming a thick steel plat when calculating the lateral nail load-carrying capacity. If no calculations are made a reduction factor equal to the ratio between the characteristic withdrawal capacity of the actual used threaded nail and the characteristic withdrawal capacity of the corresponding connector nail according to table B1 in ETA-04/0013 is applicable for all load-carrying capacities of the connection.

Other fasteners

Further, for most hold downs, anchor bolts are assumed as fasteners to a reinforced concrete structure. For such hold downs it is stated at the tables with load-carrying capacities (Annex B) which characteristic capacities have been assumed for the bolt connection. Bolts to a steel structure with at least the same capacities can also be used.

Stainless steel

For the post bases and the hold downs produced from stainless steel type 1.4401 or type 1.4404 according to EN 10088-4:2005 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 N/mm², a minimum 1.0% yield stress of 270 N/mm² and a minimum ultimate tensile strength of 530 N/mm² the characteristic load carrying capacities can be considered as the same as those published in this document subject to the use of stainless CNA connector nails or CSA connector screws covered by the ETA-04/0013 or stainless threaded nails or screws in accordance to the standard EN 14592 respecting the rules given in the paragraph "fasteners" above.

3.11 Aspects related to the performance of the product

3.11.1 Corrosion protection in service class 1 and 2 In accordance with ETAG 015 the hold downs shall have a

In accordance with ETAG 015 the hold downs shall have a zinc coating weight of min. Z275. The steel employed is S250 GD with min. Z275 according to EN 10346 and G90 SS Grade 33 according to ASTM A-653.

3.11.2 Corrosion protection in service class 3

In accordance with Eurocode 5 the hold downs with a thickness of up to 3 mm shall be made from stainless steel. Hold downs with a thickness from 3 to 5 mm can be made from stainless steel or have a zinc coating of min. Fe/Zn 25c/Z350 according to ISO 2081/EN 10147. The nails or screws shall be produced from stainless steel or have a zinc coating of min. Fe/Zn 25c.

This requirement is fulfilled by post bases with a corrosion protection hot-dip galvanized of approximately 55 μ m according to EN ISO 1461:1999 or stainless steel according to EN10088:2005 or electroplated zinc coating according to EN12329:2000 allowing a use of the product in external conditions or sherardizing according to EN 13811:2003.

3.12 General aspects related to the fitness for use of the product

The post bases and the hold downs are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process as identified during the inspection of the plant by notified inspection body and laid down in the technical documentation.

The execution of the connection shall be in accordance with the manufacturers installation guide.

Hold downs

A hold down connection is deemed fit for use provided:

- The forces shall act on the timber members as described in Annex C.
- The timber member shall be free from wane under the nails in the vertical flap.
- The support shall be restrained against rotation.
- Nail or screw types and sizes shall be those mentioned in the tables of Annex D.
- The nails or screws shall be inserted without predrilling of the holes.
- There shall be nails or screws in the holes as prescribed in Annex D.
- There shall be no gap between the hold down connector and the timber member or the support, unless otherwise described
- The bolts shall have a diameter not less than the hole diameter minus 2 mm.
- The bolts shall have washers as specified in Annex C

Post bases

The stated type of fasteners for each post base has to be applied in applicable holes in the post base.

The installation instructions provided by the manufacturer stipulate:

- The primary structural member the post member shown in typical installation page 16 or a beam member - to which the post bases are fixed shall be:
 - Restrained against rotation
 - Capable to transfer the force to the post bases as assumed.
 - Free from wane in areas in contact with the post base.
- The secondary structural member the concrete support to which the post bases are fixed shall be:
 - Made from concrete of at least strength class C15, unless otherwise is indicated in annex C of this ETA.
- To ensure sufficient capacity the designer has to take into account splitting of the timber.
- The timber member shall be free from wane.
- There shall be no gap between the timber and the horizontal contact area.
- Otherwise the gap between the timber member and the post base may not exceed 3 mm.
- There are no specific requirements relating to preparation of the timber members.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 97/638/EC of the European Commission1, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 2+.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark

Issued in Copenhagen on 2015-12-03 by

Thomas Bruun Managing Director, ETA-Danmark

Annex A: Revision History

Modifications and additions to the previous ETA-07/0285 valid from 2013-04-30 to 2018-04-30				
Pages	Update			
1-5	Renamed the index			
D33	Added PU /EMBU			
D6	Load values			
D34	Added CPT			
D35	Added ABW			
D36	Added APR110/150			
D37	Added PBH75 / PBH120			
D63	AKR: added new size 205; added new nail pattern			
D64-4	AH16050: added new load application table			
D1	PPD: Add no. + size of nails, add min. concrete type, add load table for "C20"			
D18	APB100/150: adjust name table			
Tab. D19-2	PPRC: update Zinc coating			
Fig. D61-1	HD3B: include sizes into the drawing			
Tab. D68-3	HE-anchor: adjust formula			

Table with the product names and alternative names / Hold downs

Alternative names are given by the products in annex D

The annexed "x" in the name of products is for the different size of products, the range is given in the Annex A. It may be possible to added at the end of name following letter and/or combinations. = galvanized G S or S2 or IX = Stainless or Inox = high corrosion resistant steel HCR -K = Kit; incl. fasteners -B = without Barcode = retail -R

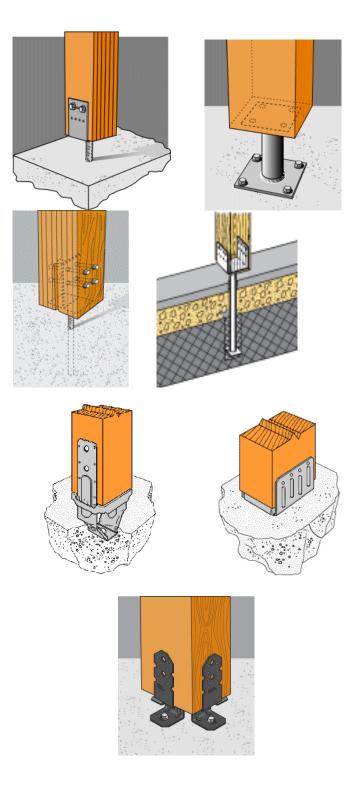
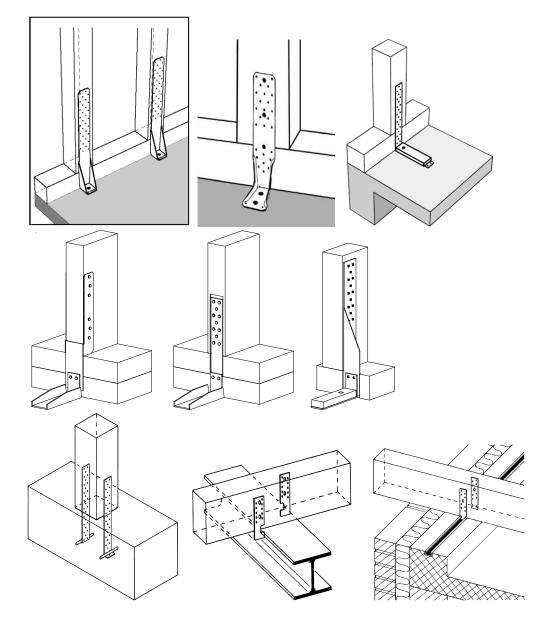

	alternative names				
Product Name	UK	France	Denmark	Germany	old name
PPD					D
PI		PPI/26000			Ι
РР					Р
PPL					PL
PL					L
PIL					IL
PIS					IS
PISB	PBH				ISB
PISMAXI	1.211				IS MAXI
PISBMAXI					ISB MAXI
PLS					LS
PLB					LB
PVD		PB31950 PB31948			Vario D
		PB31951			1
PVDB		PB31949			Vario DB
PVI					Vario I
PVIB					Vario IB
PPB					PB
PPS					PS
PJPS					JPS
PJPB					JPB
PJIS					JIS
PJIB					JIB
PUA					U-Shoe
PPA					
FPB					
PLPP180					
PPR					
PPRIX					
PPRB					
APB100/150					
PPRC DDL D	-	-	-	-	-
PBLR	-	-	-	-	-
PPUP					
PPS					
PPSDT					
PPSP					
PPSR320					
PPMINI					
APB7090					
PBP					
PBS					
ABE					
CPB					
CPS					

Table with the product names and alternative names / post bases


	alternative names				
Product Name	UK	France	Denmark	Germany	old name
PGS					
PBL					
CMR					
CMS					
PU		EMBU			
CPT					
ABW					
APR					
It may be possib	le to ad	d the followi	ing letter and	/or combina	tions at the
end of the name.	-				
G	G = galvanized				
S or S2 or IX	X = Stai	nless or Inox	Σ.		
HCR	= high corrosion resistant steel				
-K	= Kit; incl. fasteners				
-B	= without Barcode				
-R	= reta	il			

Annex B Typical Installation

B1 Typical installation post bases

B2 Typical installation hold down

Annex C Characteristic load-carrying capacity

C1 Design Basis - general

The design values F_d are calculated from the modified characteristic capacities $F_{R,k}$ for service class 1 and 2 and the indicated load-duration classes as:

$$F_d = \frac{F_{R,k}}{\gamma_M}$$

with the material partial coefficient γ_M for wood.

Modified characteristic capacity means, that the characteristic load-carrying capacities have been modified by the factor k_{mod} as given in **Table 1**.

The design values F_d are calculated form characteristic capacities $F_{R,k}$ as:

$$R_d = \frac{k \mod R_k}{\gamma_M}$$

with the material partial coefficient γ_M for wood and the load-duration factor k_{mod} is given in table 1 or 2, correspondent the service class

Table 1	Factor k_{mod} for service class 1 and 2
---------	--

Load duration class and k _{mod} factors for service class 1 and 2					
P L M S I					
Permanent Long term Medium term Short term Instantaneous					
0,6	0,7	0,8	0,9	1,1	

Table 2Factor kmod for service class 3

	Load duration class and k _{mod} factors for service class 3					
Р	P L M S I					
Permanent	Long term	Medium term	Short term	Instantaneous		
0,5	0,55	0,65	0,7	0.9		

For Service class 3 the characteristic capacities may be calculated from values given in tables by interpolation analog to the k_{mod} factors, or using the formulas with the relevant k_{mod} .

Density

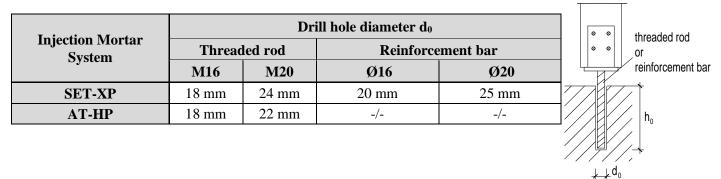
The load-carrying capacities of the post base and the hold downs connections are stated for a timber strength class C24 with a characteristic density of 350 kg/m3 unless otherwise indicated.

The load-carrying capacity of the connections for a lower characteristic density should be determined under the assumption that the load-carrying capacity is proportional to the density. In consequence, the value should be reduced using the factor k_{dens} as defined below:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)$$

where ρ_k is the characteristic density of the timber in kg/m³ and 350 is the characteristic density for timber class C24 in kg/m³.

The load-carrying capacity for a larger characteristic density shall be taken as equal to the one published in this document unless a special investigation is made


Concrete

The load-carrying capacities of the post base connections are stated for a concrete class C15 unless otherwise indicated.

Installation with bonded anchorage

The post bases of types: **PJIS, PLS, PJPS, PPS** may be installed in reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum as a post-installed-anchorage with injection system Simpson Strong -Tie ® SET-XP Epoxy Adhesive Injection System (acc. ETA-11/0360) or Simpson Strong-Tie ® AT-HPTM (acc. ETA-11/0150 or ETA-11/0151). The design of the anchorage installation shall be performed in accordance with the latest versions of the equivalent European technical approval (ETA).

The post bases of types: **PI**, **PP**, **PPD** may be installed in reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum as a post-installed-anchorage with injection system Simpson Strong -Tie ® SET-XP Epoxy Adhesive Injection System. The design of the anchorage installation shall be performed in accordance with the latest version of the European technical approval ETA-11/0360.

Wane

Where force is carried by contact compression no wane may occur.

Where the lateral force is acting toward a Hold Down connector the force is carried by contact compression so for this case no wane may occur in the surface of the timber under the vertical flap. Additionally, no wane may occur under the nails.

Fastening

Unless otherwise indicated in the calculations the holes in the post bases have to be fully applied with the applicable fasteners. The fastener types for which the calculations have been made are stated at each post base. The nail pattern shall be as described in Annex D. The fastener types for which the calculations have been made are stated at the relevant post bases and hold downs.

The thickness of the beam shall be a minimum of the embedment depth of the nails or screws.

Assumed characteristic capacities of anchor bolts

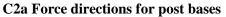
The capacity of the anchor bolts are to be checked.

The calculations to use corresponding to the forces are outlined below:

For a lateral load: the axial force for the bolt: $F_{axial,bolt} = H_1 \: x \: e \: / \: f$


 $F_{lateral, bolt} \,{=}\, H_1 \,{/}\, n$

For an uplift load:


$$F_{axial,bolt} = F_{up} / n$$

With n = number of bolts.

The above method should be used to check anchor bolt capacities unless otherwise stated alongside the product details.

C2 Definition of force directions

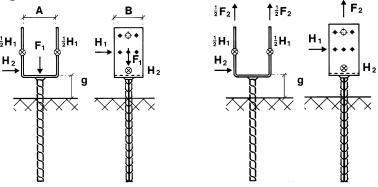


Figure C2a.Typical connection with notation for loads. The actual force directions are indicated at each post base The capacities in the tables are stated in kN and kNm.

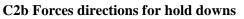
Gap

The gap (g) is the distance from the top side of the concrete to the top side of the top plate. The gap is stated for each post base in the following.

Acting forces

Unless otherwise indicated in the tables with load-carrying capacities, the forces are assumed to act as described below:

- F₁ Load-carrying capacity for downward load acting along the central axis of the joint
- F_2 Load-carrying capacity for upward load acting along the central axis of the joint
- H₁ Load-carrying capacity for lateral load acting in the centre of the post in line with the lower row of holes
- H₂ Load-carrying capacity for axial load acting in the centre of the compression zone at the bottom of the timber member
- $M_{1/2}$ are described by types CMR and CMS


Combined forces

In the following tables the load-carrying capacities are given for the individual loads: F_1 , F_2 , H_1 and H_2 .

For combinations of loads it is – unless otherwise indicated – sufficient to verify that the individual loads can be taken.

For horizontal loads H_1 and H_2 acting simultaneously the resulting horizontal load shall be calculated as

 $H = \sqrt{H_1^2 + H_2^2}$

The characteristic load-carrying capacities are determined for the following force directions.

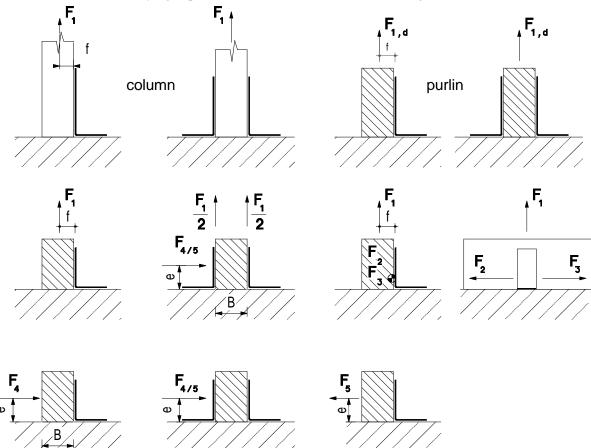


Figure C2b: Forces and their assumed positions. Top row for Hold Downs only subjected to a lifting force. Bottom rows for Hold Downs subjected to both eccentric lifting forces and lateral forces.

Two hold downs Lifting force acting along the central axis of the joint F_1 F₂ and F₃ Lateral force acting in the joint between the purlin and beam in the purlin direction F4 and F5 Lateral force acting in the beam direction along the axis of the joint but elevated e above the beam One hold down per connection Lifting force acting in the central axis of the hold down but in a distance f from the vertical flap of the F_1 hold down If the purlin is prevented from rotation the load-carrying capacity will be half that of a connection with two hold downs F₂ and F₃ Lateral force acting in the joint between the purlin and the beam in the purlin direction Lateral force acting in the beam direction perpendicular to the vertical flap elevated e above the beam F_4 directed towards the hold downs vertical flap F₅ Lateral force acting in the beam direction perpendicular to the vertical flap elevated e above the beam

F₅ Lateral force acting in the beam direction perpendicular to the vertical flap elevated e above the beam directed away from the hold downs vertical flap

Combined forces

For practical purposes the strength verification is always carried out for design forces and design capacities. If the forces are combined the following inequalities shall be fulfilled:

$$\sum_{1-i} \left(\frac{F_{i,d}}{R_{i,d}} \right) \le 1,0 \qquad \text{For the hold down AKR shall be fulfilled:} \left(\frac{F_{1,d}}{R_{1,d}} + \frac{F_{4/5d}}{R_{4/5,d}} \right)^2 + \left(\frac{F_{2/3d}}{R_{2/3,d}} \right) \le 1,0$$

The capacity can be limited by the capacity of the anchor bolt. This has to be investigated separately, see below.

Additional conditions

The nail pattern shall be as described in Annex D. The fastener types for which the calculations have been made are stated at the relevant hold downs.

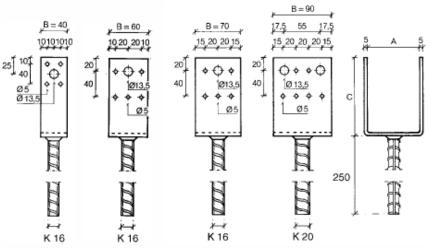
The thickness of the beam shall be according to Eurocode 5, t_{pen} shall be min. 6*d*, where *d* is the diameter of the nail or screw.

C3 Fasteners

Nail, screw and bolt type	Nail, screw and bolt size (mm)		Finish and corrosion protection
	Diameter	Length	
Connector nail According to ETA-04/0013	3,7; 4,0; 4,2	35 to 100	Electroplated zinc
Annular ring shank nail according to EN 14592	3,1 4,0	35 35 to 100	Electroplated zinc
Smooth shank nail	3.75	75	Hot dipped galvanized
Smooth shank nail	4.0	90	Hot dipped galvanized
Lag screw	8; 10; 12; 16		Electroplated zinc
Wood screw	5,0	-	Electroplated zinc
Wood screw	10,0	-	Electroplated zinc
Wood screw	12,0	-	Electroplated zinc
Wood screw	16,0	-	Electroplated zinc
Screw, SPAX-S	6,0	≥60	Electroplated zinc
Screw, SPAX SCRB/9558	5,0	80	Electroplated zinc
Dowel	8,0	-	
Dowel	10,0	-	Electroplated zinc/ Hot-dip galvanized
Dowel	12,0	-	The off Bar and the
Shear plate connector type C2	62 75		Hot-dip galvanized
Bolt M12	12	-	
Bolt M16	16		Companying compation
Anchor bolt M10	10		Concerning corrosion protection see the
Anchor bolt M12	12	-	specifications of the manufacturer
Anchor bolt M16	16	-	manuracturer
Concrete screws *	8-20		
Ejot Saphier JT2-3-5,5x25	5,5		See the manufacturer

* according to a technical approval

Annex D Product definition and capacities


Post Bases

D1: PPD

	alternative names			
Product Name	UK	France	DK	D
PPDxx				D
: CDDD				

xx = size of PPD

Figure D1-1: Drawings

Table D1-1: Size specification

Type			Dimen	sions [mm]	
	А	В	C	Ribbed bar Ø	No. of nails / flap
PPD 48 x 40	48	40	126.5	16	4
PPD 50 x 40	50	40	125.5	16	4
PPD 73 x 40	73	40	126.5	16	4
PPD 100 x 40	100	40	125.5	16	4
PPD 98 x 60	98	60	127.5	16	5
PPD 70 x 70	70	70	131.5	16	5
PPD 73 x 70	73	70	130.0	16	5
PPD 75 x 70	75	70	129.0	16	5
PPD 80 x 70	80	70	126.5	16	5
PPD 90 x 70	90	70	131.5	16	5
PPD 100 x 70	100	70	126.5	16	5
PPD 90 x 90	90	90	141.5	20	6
PPD 100 x 90	100	90	136.5	20	6
PPD 115 x 90	115	90	129.0	20	6
PPD 120 x 90	120	90	126.5	20	6
PPD 123 x 90	123	90	125.0	20	6
PPD 125 x 90	125	90	124.0	20	6
PPD 140 x 90	140	90	126.5	20	6
PPD 148 x 90	148	90	122.5	20	6

Table D1-2: Material specification

Material thickness	Material Grades	Coating specification
5	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 150 1401.1999
	Or stainless steel as described	

Table D1-3: Characteristic capacity – for concrete C20 [full nailing with CNA4,0x40]

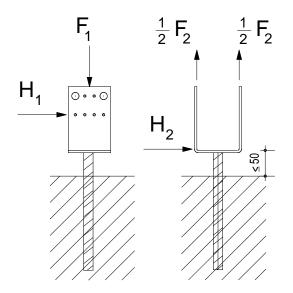
 $k_{modi}=1,18$

			loa	d direction [f	or concrete C2	20)			
F ₁ characterist capacity (kN)		st capacity	F ₂ characterist capacity (kN)		H _{R1} characterist capacity (kN)		H _{R2} characterist capacity (kN)		
Size of	min	ı. of	min	. of	min	min. of		min. of	
PPD	timber	steel 1)	timber	steel 1)	timber	steel 1)	timber	steel 1)	
48 x 40	40,3	40,9	14,7	13,0		3,4	8,3	5,8	
50 x 40		40,9	14,7	12,2		3,4	8,3	5,8	
73 x 40		38,6		7,3		3,4		5,8	
100 x 40	47,9	34,9		5,0		3,4		5,8	
98 x 60	73,7	40,9		7,6		3,6		5,8	
73 x 70	69,7	40,9	18,4	12,8		3,5	10,9	5,8	
70 x 70	63,5	40,9	18,4	13,5		3,6	10,9	5,8	
75 x 70	74,0	40,9	18,4	12,3		3,6	10,9	5,8	
80 x 70	81,9	40,9	18,4	11,4		3,7	10,9	5,8	
100 x 70		40,9		8,7		3,7		5,8	
90 x 90	78,4	54,5	22,0	13,4		6,4	18,7	11,4	
90x70	94,8	54,5	18,4	10,4		5,5	14,6	10,8	
100 x 90	99,4	54,5	22,0	11,7		6,6	18,7	11,4	
100x70	91,7	54,5		9,1		5,5		10,8	
115 x 90		54,5		9,9		7,0		11,4	
120 x 90		54,5		9,4		7,2		11,4	
123 x 90		54,5		9,1		7,2		11,4	
125 x 90		54,5		8,9		7,3		11,4	
140 x 90	102,2	54,5		7,8		7,2		11,4	
148 x 90	99,9	54,5	land dynation	7,3		7,3		11,4	

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

	load direc	ction - for co	ncrete C20	[full nailing	g with CNA	4,0x40]		
	F1		F2		HR1		HR2	
Size of	characteris	stic capacity	characteris	tic capacity	characteris	tic capacity	character	stic capacity
PPD	min. of		min. of		min. of		min. of	
[mm]	timber	steel 1)	timber	steel 1)	timber	steel 1)	timber	steel 1)
48 x 40	40.3	40.9	14.7	13.0	-	3.4	8.3	5.8
50 x 40	-	40.9	14.7	12.2	-	3.4	8.3	5.8
73 x 40	-	38.6	-	7.3	-	3.4	-	5.8
100 x 40	47.9	34.9	-	5.0	-	3.4	-	5.8
98 x 60	73.7	40.9	-	7.6	-	3.6	-	5.8
73 x 70	69.7	40.9	18.4	12.8	-	3.5	10.9	5.8
70 x 70	63.5	40.9	18.4	13.5	-	3.6	10.9	5.8
75 x 70	74.0	40.9	18.4	12.3	-	3.6	10.9	5.8
80 x 70	81.9	40.9	18.4	11.4	-	3.7	10.9	5.8
90x70	94.8	54.5	18.4	10.4	-	5.5	14.6	10.8
100 x 70	-	40.9	-	8.7	-	3.7	-	5.8
90 x 90	78.4	54.5	22.0	13.4	-	6.4	18.7	11.4
100 x 90	99.4	54.5	22.0	11.7	-	6.6	18.7	11.4
115 x 90	-	54.5	-	9.9	-	7.0	-	11.4
120 x 90	-	54.5	-	9.4	-	7.2	-	11.4
123 x 90	-	54.5	-	9.1	-	7.2	-	11.4
125 x 90	-	54.5	-	8.9	-	7.3	-	11.4
140 x 90	102.2	54.5	-	7.8	-	7.2	-	11.4
148 x 90	99.9	54.5	-	7.3	-	7.3	-	11.4

Table D1-4: Characteristic capacity – for concrete C20 [full nailing with CNA4,0x40]


 $k_{modi} = 1,18$

1) for steel $k_{mod} = 1,0$ shall be used for all load durations

For vertical loads F_1 and horizontal loads H_2 acting simultaneously it shall be verified that: $F_1 / F_{R1} + H_2 / H_{R2} \le 1$.

For vertical uplift F_2 and horizontal loads H_2 acting simultaneously it shall be verified that: $(F_2 / F_{R2})^2 + (H_2 / H_{R2})^2 \le 1.$


Figure D1-2: Application

D2: PI

	alternative names					
Product Name	UK	France	DK	D		
PI		PPI/26000		Ι		

Figure D2-1: Drawings

Table D2-1: Size specification $n\!/\!a$

Table D2-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN ISO 1401.1999
Or stainless steel as described		

 $k_{modi}=1,18$


Load	Timber	Concrete		Load d	luration cl	ass (kN)	
Direction	depth, t [mm]		Р	L	М	S	Ι
F_{R1}		C12			36,9		
I' KI		C15			43,7		
		C20			54,5		
F_{R2}	60				13,8 k _{mod}		
F R2	80				16,0 k_{mod}		
	100				18,7 k _{mod}		
	≥ 120				20,7 k _{mod}		
H_{R1}	60		5,6	6.6	7.5	7,9	7,9
	80		6,5	7,6	7,9	7,9	7,9
	100		7,6	7,9	7,9	7,9	7,9
	≥ 120		7,9	7,9	7,9	7,9	7,9
H_{R2}	60		1,9	2,2	2,5	2,8	3,4
11R2	80		2,4	2,8	3,3	3,7	4,5
	100		3,6	4,2	4,7	5,3	5,3
	120		4,7	5,4	5,4	5,4	5,4
	140		5,6	5,7	5,7	5,7	5,7
	160		6,3	6,3	6,3	6,3	6,3

For vertical loads F_1 and horizontal loads H_2 acting simultaneously it shall be verified that: $F_1 / F_{R1} + H_2 / H_{R2} \le 1$.

D3: PP / PPL

	alternative names					
Product Name	UK	France	DK	D		
PP				Р		
PPL				PL		

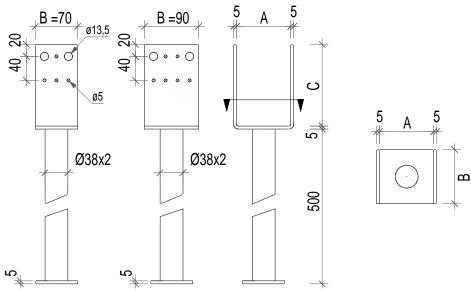
Figure D3-1: Drawings

Table D3-1: Size specification n/a

Table D3-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10 S235JR according to EN 10025:2004		Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN ISO 1401.1999
	Or stainless steel as described	

Table D3-3: Characteristic capacity


 $k_{modi}=1,18$

Туре	Load	Load duration class (kN)					
	Direction	Р	L	Μ	S	Ι	
	F_{R1}	31,6					
PP	F_{R2}	7,6 k_{mod}					
	H_R			2,7 k_{mod}			
	F_{R1}	57.1					
PPL	F_{R2}	7,6 k _{mod}					
	H_R	1.6	1.9	2.1	2.4	2.5	

D4: PL

	alternative names					
Product Name	UK	France	DK	D		
PL				L		

Figure D4-1: Drawings

Table D4-1: Size specification

Туре	Dimensions [mm]				
	А	В	С		
PL80/70G	80	70	126		
PL100/70G	100	70	126		
PL90/90G	90	90	141		
PL100/90G	100	90	136		
PL120/90G	120	90	126		
PL140/90G	140	90	126		

Table D4-2: Material specification

Material thickness	Material Grades	Coating specification
5	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Tube Ø38x2,0S220JR according to EN10025:2004		EN ISO 1401.1999
	Or stainless steel as described	

Table D4-3: Characteristic capacity

 $k_{modi}=1,18$

		characteristic capacity (kN)		
Load		mir	n. of	
direction	type	timber	steel 1)	
F_1	all		57,1	
	PL80/70	18,4	17,3	
	PL80/70	18,4	11,7	
F_2	PL90/90	22,0	18,0	
12	PL100/90	22,0	15,1	
	PL120/90	19,0	11,4	
	PL140/90		9,2	
H_1	all		2,8	
H ₂	all		3,5	

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

For vertical loads *F* and any horizontal loads *H* acting simultaneously it shall be verified that: $F_1 / F_R + H / H_R \le 1$.

D5: PIL

	alternative names					
Product Name	UK France DK D					
PIL				IL		

Figure D5-1: Drawings

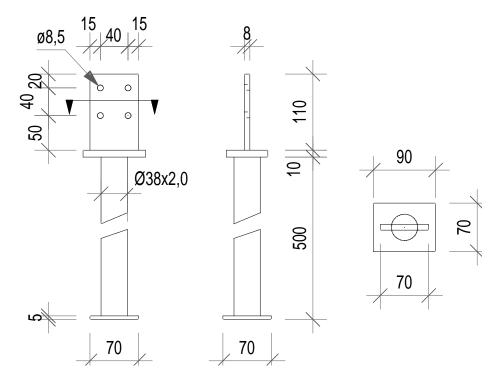


Table D5-1: Size specification n/a

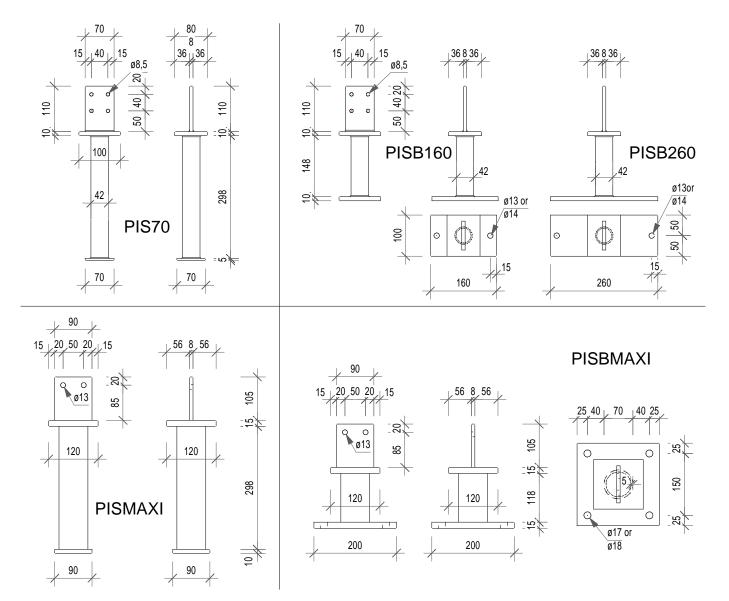
Table D5-2: Material specification

Material thickness	Material Grades	Coating specification
5, 8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Tube Ø38x2,0	S220JR according to EN10025:2004	EN ISO 1401:1999
Or stainless steel as described		

 Table D5-3: Characteristic capacity

 $k_{modi} = 1,18$

Load	Timber		Load d	uration cl	Load duration class (kN)					
Direction	thickness, t [mm]	Р	L	М	S	Ι				
F_{R1}		54 57								
F_{R2}	60 80 100	13,8 k _{mod} 16,0 k _{mod} 18,7 k _{mod}								
H _{R1}	≥ 120	20,7 k _{mod}								
H_{R2}	60 80 100 120 140	1.8 1.8 2.0 2.2 2.4								
	160			2.4						


For vertical loads *F* and any horizontal loads *H* acting simultaneously it shall be verified that: $F_1 / F_R + H / H_R \le 1$.

D6: PIS / PISB / PISMAXI / PISBMAXI

	alternative names					
Product Name	UK	France	DK	D		
PIS70				IS		
PISBxx				ISB		
PIS Maxi				IS Maxi		
PISB Maxi				ISB Maxi		

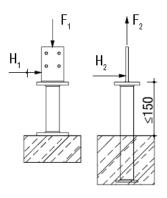
xx = size of PISB

Figure D6-1: Drawings

Table D6-1: Size specificationSee drawing

Table D6-2: Material specification

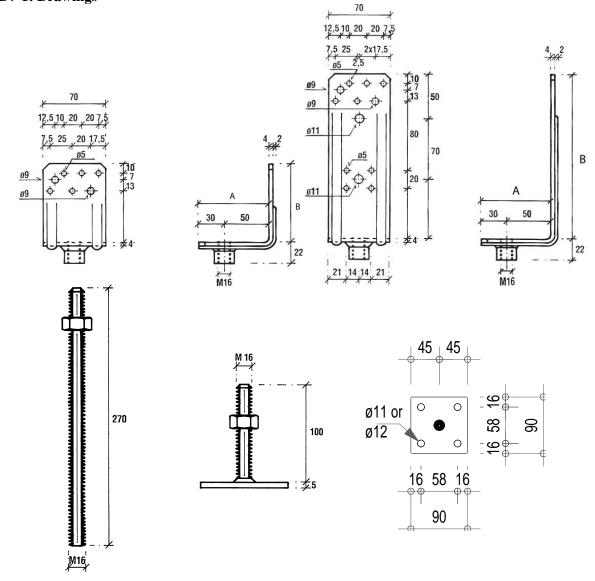
Material thickness	Material Grades	Coating specification
8, 10, 15	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
tube	S235JR according to EN 10025:2004	EN 150 1401.1999
Or stainless steel as described		


Table D6-3: Characteristic capacity – for concrete C12

 $k_{modi} = 1,18$

Load direction	Width of timber	PIS char min.	racteristic	capacity	Bxx [kN] 1. of	Width of timber	PISMA cha min. c	racteristic	PISBM capacity [k min.	N]
	b [mm]	timber	steel 1)	timber	steel 1)	b [mm]	timber	steel 1)	timber	steel 1)
F_1	all	142.8	110.8	142.8	110.8	all	272.2	187.9	272.2	256.9
	80	16.0		16.0		120	34.5		34.5	
F_2	100	18.7	-	18.7	-	140	38.5	-	38.5	-
	120	20.7		20.7		160	42.1		42.1	
	80	10.9		10.9		120	22.5	-	22.5	-
H_1	100	-	6.3	-	5.6	140	25.2	24	25.2	141
	120	-		-		160	27.5	24	27.5	14.1
	80	4.1	-	4.1	-	120	7.7		7.7	
H ₂	100	5.9	5.1	5.9	5.1	140	9.9	-	9.9	-
	120	7.0	5.5	7.9	5.5	160	12.3		12.3	

1) for steel kmod = 1,0 shall be used for all load durations


Figure D6-2: Application

D7: PLS and PLB

	alternative names						
Product Name	UK France DK D						
PLS				LS			
PLB				LB			

Figure D7-1: Drawings

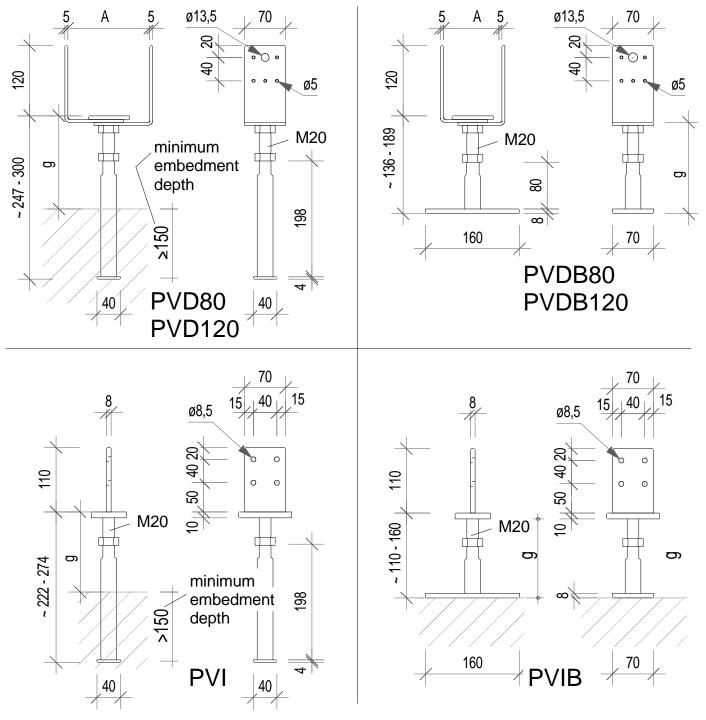
		1	
Туре	Dimensio	ons [mm]	
	А	В	Upper part
PLS60/65G	60	65	S
PLS60/165G	60	165	S
PLS80/90G	80	90	S
PLS80/190G	80	190	S
PLB60/65G	60	65	В
PLB60/165G	60	165	В
PLB80/90G	80	90	В
PLB80/190G	80	190	В

Table D7-2: Material specification

Material thickness	Material Grades	Coating specification	
4, 5	S235JR according to EN 10025:2004	Hot-dip galvanized according to	
Threaded rod	Threaded rod: S355 JO according to EN 10025:2004	EN ISO 1461:1999	
	Or stainless steel as described		

Table D7-3: Characteristic capacity

 $k_{modi}=1,18$


		PLB und PLS			
Load	size of PLS /		characteristic capacity [kN] min. of		
direction	PLB	connection to:	timber	steel 1)	
F ₁ down	all	column	50,8	36,4	
		beam	20,1	20,2	
F2 uplift		with fastener:	to column or beam		
	60x65	3 CNA4,0x40 or 2 CSA5,0x35	5,4	3,5	
	60x165	2 CNA4,0x40 or 1 screw 8x60	2,8	3,0	
	80x90	3 CNA4,0x40 or 2 CSA5,0x35	-	2,3	
	80x190	2 CNA4,0x40 or 1 screw 8x60	2,8	2,3	

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

D8: PVD ,	PVDB,	PVI,	PVIB
------------------	-------	------	-------------

	alternative names				
Product Name	UK	France	DK	D	
PVD80		PB31950		Vario D80	
PVD120		PB31948		Vario D120	
PVDB80		PB31951		Vario DB80	
PVDB120		PB31949		Vario DB120	
PVI				Vario I	
PVIB				Vario IB	

Figure D8-1: Drawings

Table D8-1: Size specification

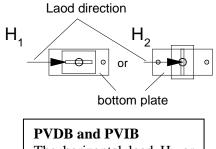

Туре	Dimensions [mm]				
	A min A max No. of holes $\emptyset 5$				
PVD 80	80	120	5 / flap		
PVD 120	120	160	5 / flap		
PVDB80	80	120	5 / flap		
PVDB120	120	160	5 / flap		

Table D8-2: Material specification

Material thickness	Material Grades	Coating specification
4, 5, 8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S355 JO according to EN 10025:2004	EN 150 1401.1999
	Or stainless steel as described	

 $k_{modi}=1,18$

		PVD		PVD PVBD		
	width of	cl	naracteris	tic capacity [kN]		
Load	timber	min	. of	min.	of	
direction	b [mm]	timber	steel 1)	timber	steel 1)	
F ₁		77,8	49,0	77,8	49,0	
	80	17,6		17,6		
F_2	120	17,6	11,6	17,6	11,6	
	160	15,2	7,6	15,2	7,6	
		at g =		at g =		
		48mm	2,7	136mm	1,4	
H_1	$\geq \! 80$	73mm	2,1	161mm	1,2	
		98mm	1,7	186mm	1,1	
		48mm	6,5	136mm	3,2	
H_2	$\geq \! 80$	73mm	3,9	161mm	2,7	
		98mm	2,8	186mm	2,3	

The horizontal load H_1 or H_2 shall always be in the direction of the longer side of the bottom plate.

		PV	/Ι	PVI	В
	width of	cł	naracteristi	c capacity [k]	N]
Load	timber	miı	1. of	min.	of
direction	b [mm]	timber	steel 1)	timber	steel 1)
F ₁		90,7	49,0	90,7	49,0
	80	16,0		16,0	
F_2	120	20,7		20,7	
	160	20,7		20,7	
		at g =	57mm	at $g = 1$	45mm
H_1			2,7		2,6
	80	2,5	2,2	1,9	1,9
H ₂	120	3,8	3,8	3,3	2,7
	160	5,7	4,7	3,5	2,7

 $^{\rm 1)}$ for steel k_{mod} = 1,0 shall be used for all load durations

Capacities have been determined for a specific distance g. For other cases, please apply the given modification factors given in this table

Modification factors for differing size g

	PVI		PVIB	
	g	factor	g	factor
Basis for table before	32	1,15	120	1,1
	57	1,0	145	1,0
	82	0,85	170	0,85

D9: PPB and PPS

	alternative names				
Product Name	UK France DK D				
PPB70				PB70	
PPB75				PB75	
PPB80		PB40605		PB80	
PPS80				PS80	

Figure D9-1: Drawings

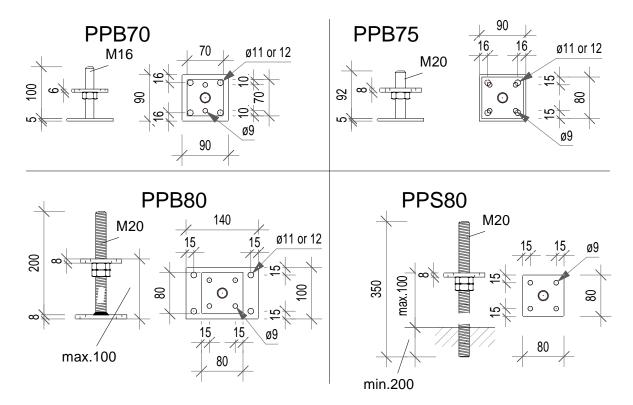


Table D9-1: Size specification n/a

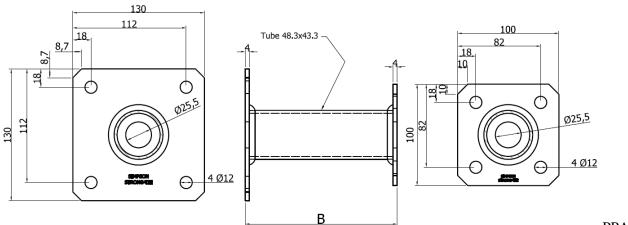
Table D9-2: Material specification

Material thickness	Material Grades	Coating specification
6, 8	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod S355 JO according to EN 10025:2004		EN ISO 1401:1999
	Or stainless steel as described	

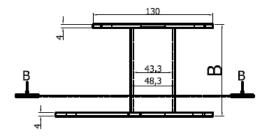
Table D9-3: Characteristic capacity

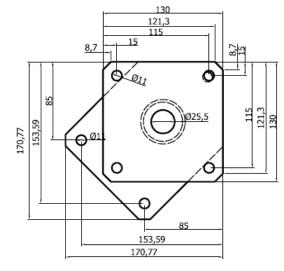
 $k_{modi}=1,18$

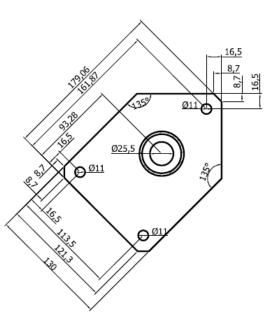
		characteristic capacity [kN]		
Load		mir	n. of	
direction	type	timber	steel ¹⁾	
			$40,0^{(2)}$ 49,5 ⁽³⁾	
F_1	PPS		49,5 ³⁾	
	PPB	88,3	63,9	


¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations ²⁾ with C15 concrete

³⁾ with C20 concrete


D10: PPA / PBL


	alternative names			
Product Name	UK	France	DK	D
PPA				
PBL				


Figure D10-1: Drawings

PBL

Table D10-1: Size specification

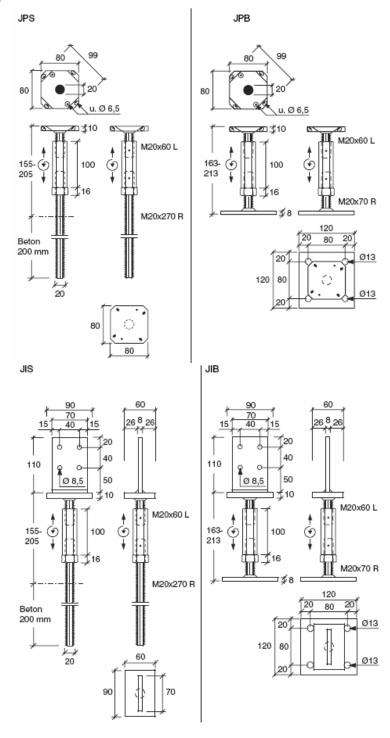
Туре	Dimension [mm]
	В
PPA100	100
PPA150	150
PBL100	100
PBL150	150

Table D10-2: Material specification

Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
tube	S235 JRH according to EN 10219-1:2006	EN ISO 1401.1999
	Or stainless steel as described	

Table D10-3: Characteristic capacity

 $k_{modi}=1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PPA100 / PBL 100 PPA150 / PBL 150	55,9	61,7	67,3	72,9	83,7

The capacities for post base PPA are valid also for the case, where the connector is turned upside down.

D11: PJPS / PJPB / PJIS / PJIB

	alternative names				
Product Name	UK	France	DK	D	
PJPS				JPS	
PJPB				JPB	
PJIS				JIS	
PJIB				JIB	

Figure D11-1: Drawings

Table D11-1: Size specification

n/a

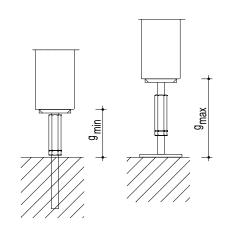
Table D11-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S355 JO according to EN 10025:2004	EN ISO 1401.1999
	Or stainless steel as described	

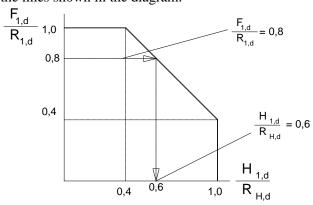
Table D11-3: Characteristic capacity – for concrete C12

 $k_{modi} = 1,18$

	width of	PJIS and PJIB characteristic capacity (kN)		
Load	timber	mii	1. of	
direction	b [mm]	timber	steel 1)	
F ₁		90,7	54,5	
	80	16,0		
F_2	100	18,7		
	120	20,7		
H_1	bei g _{min}		1,4	
11	bei g _{max}		1,1	
тт	80	2,0	1,6	
H ₂ bei g _{min}	100	2,3	1,8	
ber gmin	120	2,6	1,8	
	80	1,7	1,4	
H ₂	100	2,0	1,4	
bei g _{max}	120	2,1	1,4	


 $^{1)}$ for steel k_{mod} = 1,0 shall be used for all load durations

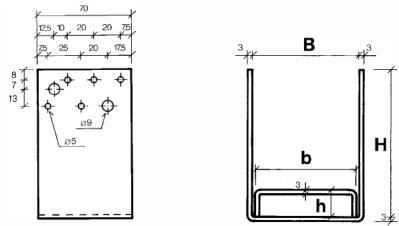
			PJPS	und PJPB
			character	istic capacity
				(kN)
Load			n	nin. of
direction	Туре		timber	steel 1)
F ₁	PJPB			54,5
Г	PJPS			54,5
Б	PJPB		76	
F ₂	PJPS		7,6	
	PJPB	~		1 7
Н	und	g _{min}	2,7	1,7 1,4
	PJPS	g _{max}		1,4

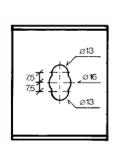

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

For types PJPS and PJPB are no difference for $H_1 \mbox{ and } H_2$.

For vertical load F_1 and horizontal load H acting simultaneously it shall be verified that the combination of loads fall below

the lines shown in the diagram.


For vertical load F_2 and any horizontal load H acting simultaneously it shall be verified that: $F_2 / F_{R2} + H / H_R \le 1$


D12: PUA

	alternative names			
Product Name	UK	France	DK	D
PUAxx				U-Anker

xx = width of the PUA

Figure D12-1: Drawings

The inside part is named PUA/Bxx

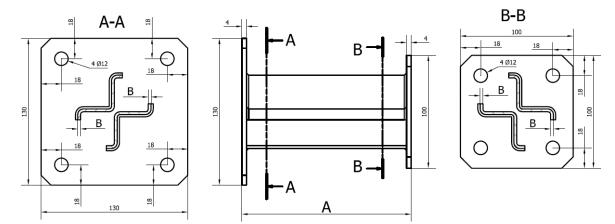
	size [mm]		size [mm]			
type	В	Н	Ø	inside part	b	h
PUA45	46	127	5;9	PUA/B42	42	27
PUA50	51	125	5;9	PUA/B47	47	25
PUA60	61	120	5;9	PUA/B57	57	20
PUA70	71	115	5;9	PUA/B67	67	25
PUA80	81	110	5;9	PUA/B77	77	20
PUA90	91	115	5;9	PUA/B87	87	25
PUA100	101	110	5;9	PUA/B97	97	20
PUA120	121	110	5;9	PUA/B117	117	20

Table D12-2: Material specification

Material thickness	Material Grades	Coating specification
3	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
	Or stainless steel as described	

Table D12-3: Characteristic capacity

 $k_{modi} = 1,18$


		PUA with PUA/B characteristic capacity (kN) min. of		
Load	-			
direction	Туре	timber	steel 1)	
F_1	alle	29,6	34,7	
	PUA45-B	18,1	10,9	
	PUA50-B	18,1	9,8	
	PUA60-B		7,6	
F ₂	PUA70-B		6,2	
Γ2	PUA80-B		5,2	
	PUA90-B		4,5	
	PUA100-B		4,0	
	PUA120-B		3.2	

PUA120-B3,21) for steel $k_{mod} = 1,0$ shall be used for all load durations

D13: FPB

	alternative names				
Product Name	UK	France	DK	D	
FPB					

Figure D13-1: Drawings

Fasteners to timber: wood screw Ø10. Fastener to concrete: anchor bolt M10.

Table D13-1: Size specification

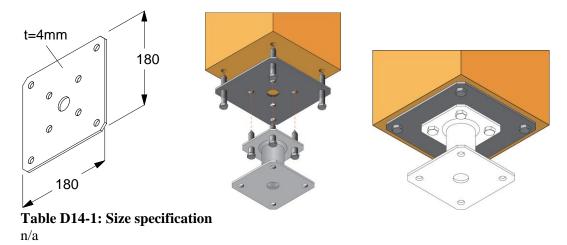
Туре	Dimensions [mm]			
	AB			
FPB100/2 - FPB100/2IX	100	2		
FPB150/2 - FPB150/2IX	150	2		
FPB100/2.5 - FPB100/2.5IX	100	2.5		
FPB150/2.5 - FPB150/2.5IX	150	2.5		

Table D13-2: Material specification

Material thickness	Material Grades	Coating specification
2; 2,5; 4,0 S235JR according to EN 10025:2004		Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 150 1401:1999
	Or stainless steel 316L according to EN 10088:2005	

Table D13-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
	FPB100/2 - FPB100/2IX	- 65.9				
E	FPB150/2 – FPB150/2IX					
F_{R1}	FPB100/2.5 - FPB100/2.5IX					
	FPB150/2.5 - FPB150/2.5IX	66.3	72.8		77.2	

The capacities for post base FPB are valid also for the case, where the connector is turned upside down.

D14: PLPP180

	alternative names				
Product Name	UK	France	DK	D	
PLPP180					

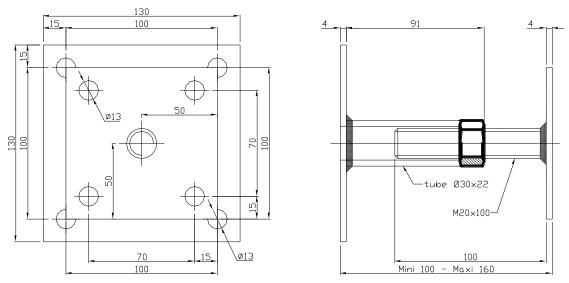
Figure D14-1: Drawings

Table D14-2: Material specification

Material thickness	Material Grades	Coating specification
4	DD11 according to EN 10111:1998	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Table D14-3: Characteristic capacity

n/a


The optional plate is compatible with the following post bases: PPA100, PPA150, FPB100, FPB150, APB100/150, PPRC. The use of this optional plate doesn't change the performance of the post bases.

It must be used with 8 wood screws as shown on the drawing above

D15: PPR

	alternative names				
Product Name	UK	France	DK	D	
PPR					

Figure D15-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10

Table D15-1: Size specification

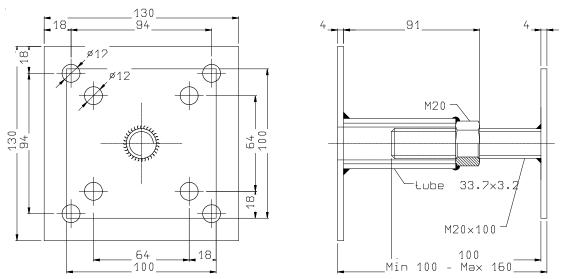
n/a

Table D15-2: Material specification

Material thickness Material Grades		Coating specification
4	P355 NB according to EN 10120:1997	
tube	P235TR1 according to EN 10216-1:2002	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	steel class 4.6 according to ISO 898:1999	
Or stainless steel as		
	described	

Table D15-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PPR,	39	42	46	48	53

The capacities are valid also for the case, where the connector is turned upside down.

D16: PPRIX

	alternative names				
Product Name	UK	France	DK	D	
PPRIX					

Figure D16-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10

Table D16-1: Size specification

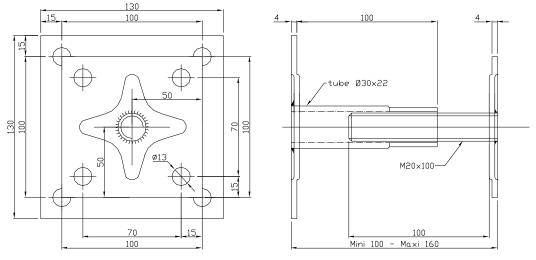
n/a

Table D16-2: Material specification

Material thickness Material Grades		Coating specification
4	Stainless steel 316L according to EN 10088:2005	
tube	B 550 BR+AC according to 10080:2006	N/A
Threaded rod	A4 (AISI 316L) according to ISO 350	

Table D16-3: Characteristic capacity

 $k_{modi}=1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PPR,	28	30	32	34	38

The capacities are valid also for the case, where the connector is turned upside down.

D17: PPRB

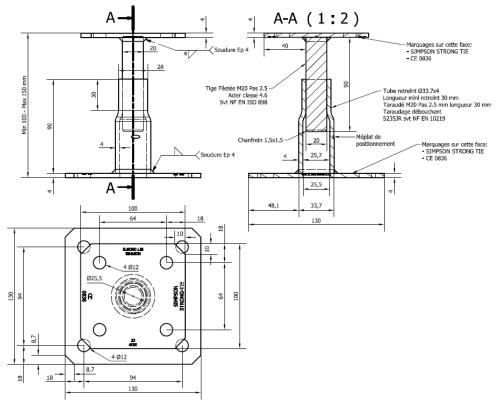
	alternative names				
Product Name	UK	France	DK	D	
PPRB					

Figure D17-1: Drawings

Table D17-1: Size specification n/a

Table D17-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube E235 according to EN 10305:2003		according to EN ISO 2081
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D17-3: Characteristic capacity

Load Direction	Туре	Load duration class (kN)				_
Direction		Р	L	Μ	S	I
F_{R1}	PPRB	33	36	38	40	45

D18: APB100/150

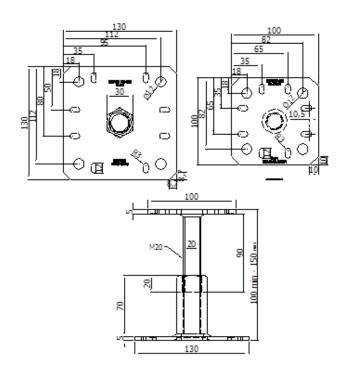
	alternative names				
Product Name	UK	France	DK	D	
APB100/150					

Figure D18-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10 **Table D18-1: Size specification** n/a

Table D18-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube	S235 JRH according to EN 10219:2006	according to EN ISO 2081
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D18-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	APB100/150	45	49.1	52.7	55.9	61.9

D19: PPRC

	alternative names				
Product Name	UK	France	DK	D	
PPRC					

Figure D19-1: Drawings

Fasteners to timber: wood screw Ø10; SPAX-S 5,0x80 at 45°; Fastener to concrete: anchor bolt M10

Table D19-1: Size specification

n/a

Table D19-2: Material specification

Material thickness	Material Grades	Coating specification		
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn12/C		
tube	C15RPB according to EN 10084:1999	according to EN ISO 2081		
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)		
	Or stainless steel as described			

Table D19-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PPRC	40	43	46	49	54

D20: PBLR

	alternative names				
Product Name	UK	France	DK	D	
PPLR					

Figure D3-1: Drawings

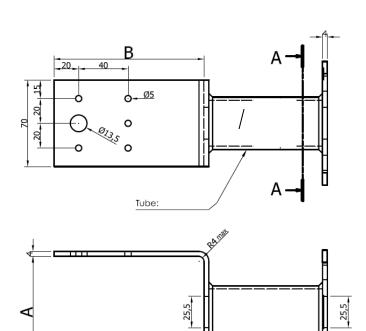
Fasteners to timber: wood screw Ø10; SPAX-S 5,0x80 at 45°; Fastener to concrete: anchor bolt M10

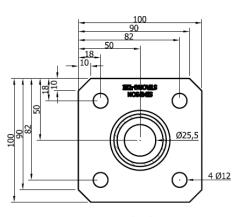
Table D20-1: Size specification

n/a

Table D20-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube	C15RPB according to EN 10084:1999	according to EN ISO 2081
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D20-3: Characteristic capacity


Load	Туре	Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PBLR	40	43	46	49	54

D21: PPUP

	alternative names				
Product Name	UK	France	DK	D	
PPUP					

Figure D21-1: Drawings

A-A

Table D21-1: Size specification

Туре	Dimension [n		
	A B		tube
PPUP70	70	126,5	Ø48,3x2,5
PPUP90	90	121,5	Ø48,3x2,5

100

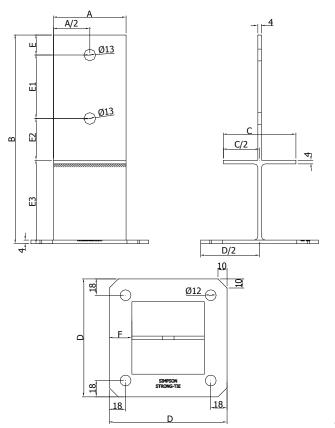
Table D21-2: Material specification

Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
tube	S235 JRH according to EN 10219-1:2006	EN 150 1401.1999
	Or stainless steel as described	

 Table D21-3: Characteristic capacity

 $k_{modi} = 1,18$

Туре	Load							
	Direction	Р	L	М	S	Ι		
PPUP 70	F_{R1}	55	65	74	83	101		
	F_{R2}		$17.8 \ k_{mod}$					
	H_{R1}			$10.6 k_{mod}$				
	H_{R2}	6,4	6,9	7,4	7,8	8,6		
PPUP 90	F_{R1}	73	85	97	103	134		
	F_{R2}		21.4 kmod					
	H_{R1}	8.6	10	11.4	12.9	14.1		
	H_{R2}	8,2	8,9	9,5	10,1	11,1		


k_{mod}: load duration factor

To obtain full load-carrying capacities for lifting force and horizontal force the characteristic withdrawal capacity of the anchors should be minimum: 15,4 kN for PPUP70 and 19,2 kN for PPUP90.

D22: PPS and PPSDT

	alternative names					
Product Name	UK	France	DK	D		
PPS						
PPSDT						

Figure D22-1: Drawings

PPS

PPSDT160

Table D22-1: Size specification

Туре	Dimensions [mm]								
	А	A B C D E E1 E2 E3 F							F
PPS170	60	170	60	100	18	48	48	56	20
PPS230	80	230	80	130	22	70	46	92	25

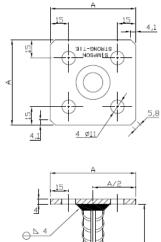
Table D22-2: Material specification

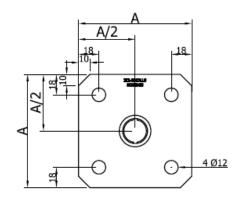
Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

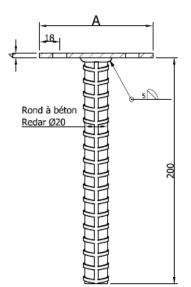
 Table D22-3: Characteristic capacity

 $k_{modi}=1,18$

Туре	Load	Load duration class (kN)				
	Direction	Р	L	Μ	S	Ι
PPS 170	F_{R1}	20,1	21,7	23,2	24,6	27,2
	F_{R2}			16,4 k_{mod}		
	H_{R1}			10,1		
	H_{R2}			1,2		
PPS 230	F_{R1}	26,8	28,9	30,9	32,8	36,2
	F_{R2}			18,0 k _{mod}		
	H_{R1}			13,3		
	H_{R2}			1,03		
PPSDT 160	F_{R1}	31	34	36	38	43
	F_{R2}			8,45 k _{mod}		
	H_{R1}			9,3		
	H_{R2}	5,4	5,9	6,3	6,7	7,4
PPSDT 230	F_{R1}	41	45	48	51	56
	F_{R2}	23,0 k _{mod}				
	H_{R1}			15,2		
	H_{R2}	7,2	7,7	8,4	8,9	9,9


k_{mod}: load duration factor


To obtain full load-carrying capacities for lifting force and horizontal force the characteristic withdrawal capacity of the anchors should be minimum: 20,2 kN for PPS170, 23,7 kN for PPS230, 13,4 for PPSDT160 and 26,8 kN for PPSDT230.


D23: PPSP

	alternative names				
Product Name	UK	France	DK	D	
PPSP					

Figure D23-1: Drawings

Rond à béton / Rebar Ø16

PPSP70 and PPSP90

PPSP100 and PPSP130

Table D23-1: Size specification

Туре	Dimensions [mm]				
	A Ø ribbed ba				
PPSP70	70	16			
PPSP90	90	16			
PPSP100	100	20			
PPSP130	130	20			

Table D23-2: Material specification

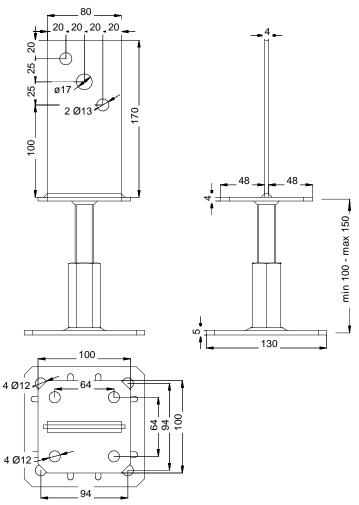
Material thickness	Material Grades	Coating specification
4 types PPSP100; PPSP130	S235JR according to EN 10025:2004	Hot-dip galvanized
4 Types PPSP70; PPSP90	DD11 acc to EN 10111:2008	according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	
	Or stainless steel as described	

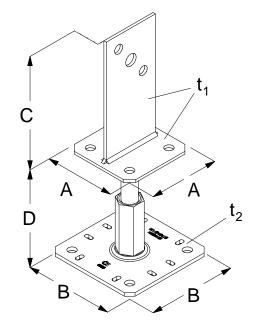

Table D23-3: Characteristic capacity

 $k_{modi}=1,18$

Load	Туре	Type Load duration class (kN)				
Direction		Р	L	Μ	S	Ι
F_{R1}	PPSP 70	22,7	24,5	26,3	28,0	30,4
	PPSP 90	24,2	26,1	27,9	29,7	30,4
	PPSP 100	33	36	38	41	41
	PPSP 130	33	36	38	41	41

Fasteners to timber: wood screw Ø10.


The characteristic compressive strength of the concrete shall be at least 20 MPa.



D24: PPSR320

	alternative names				
Product Name	UK	France	DK	D	
PPSR320					

Figure D24-1: Drawings

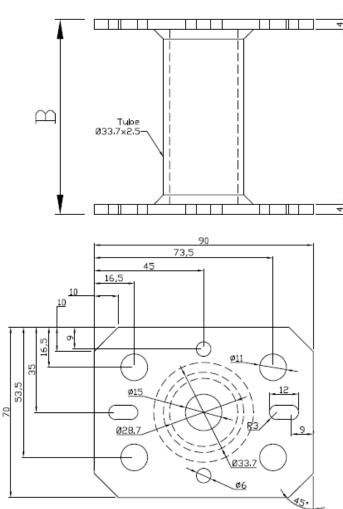
Fasteners to timber: bolt or dowel Ø16 or bolts or dowel Ø12. Fastener to concrete: anchor bolt M10.

Table D24-1: Size specification

	size [mm]						
	А	В	С	D	t_1	t_2	Ø
PPSR320	100	130	170	100-150	4	5	12,0 13,0 17,0

Table D24-2: Material specification

Material thickness	Material Grades	Coating specification
4; 5	S235JR according to EN 10025:2004	Electroplated Zinc Zn12/C according to ISO 2081:2009 and EN
tube	C15RPB according to EN 10084:1999	1403 or
Threaded rod	Steel class 4.6 according to ISO 898:1999	Sherardizing class C30 according to
Concealed plate	DD11 according to EN 10111:2008	EN 13811:2003.
	Or stainless steel as described	


Table D24-3: Characteristic capacity

Load	Load duration class (kN)				
Direrction	P L M S I				
F _{R1}	48,8				
F _{R2}			20,8		

D25: PPMINI

	alternative names				
Product Name	UK	France	DK	D	
PPMINI					

Figure D25-1: Drawings

PPMINI

Table D25-1: Size specification

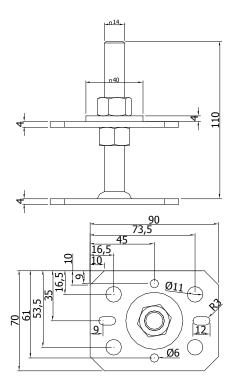
Туре	Dimension [mm]
	В
PPMINI50	50
PPMINI70	70
PPMINI80	80

Table D25-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Tube	S235 JRH according to EN 10219-1:2006	EN ISO 1401.1999
	Or stainless steel as described	

Table D25-3: Characteristic capacity

 $k_{modi}=1,18$


Load	Туре	Load duration class (kN)				
Duration		Р	L	Μ	S	Ι
F_{R1}	PPMINI	44	48	52	56	63

For PPMINI the capacities are valid also for the case, where the connector is turned upside down.

D26: APB7090/100

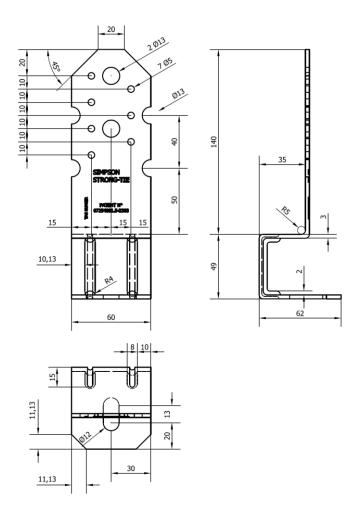
	alternative names				
Product Name	UK	France	DK	D	
APB7090/100					

Figure D26-1: Drawings

Table D26-1: Size specification n/a

Table D26-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn 12/c according to EN ISO 2081
Threaded rod	Steel class 4.6 according to EN/ISO 898:1999	or sherardizing class C30 according to EN 13811:2003
	Or stainless steel as described	


Table D26-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Duration		Р	L	Μ	S	Ι
F_{R1}	APB column APB beam	24 10,2	25 9,8	25 9,5	25 8,4	25 8,4

D27: PBP60/50

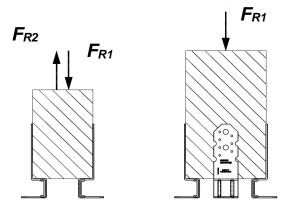
	alternative names				
Product Name	UK	France	DK	D	
PBP60/50					

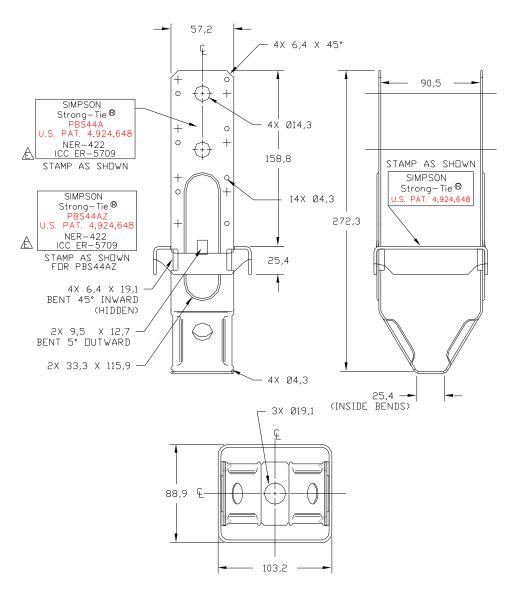
Figure D27-1: Drawings

Table D27-1: Size specification n/a

Table D27-2: Material specification

Material thickness	Material Grades	Coating specification		
3	S235JR according to EN 10025:2004	Sherardizing class C30 according to EN 13811:2003 Or electroplated zinc Zn25/A according to EN ISO 2081 Or electroplated zinc Zn10/A (alkali zinc)		
	Or stainless steel as			
	described			




Table D27-3: Characteristic capacity

Load	Туре	No. of post bases	Load duration class (kN)				
Direction			Р	L	Μ	S	Ι
F _{R1} PBP60/50	2	28					
	PBP60/50	4			63		
F_{R2}	PBP60/50	2	8.3				

D28: PBS

	alternative names				
Product Name	UK	France	DK	D	
PBS					

Figure D28-1: Drawings

Page 73 of 128 of European Technical Assessment no. ETA-07/0285 issued on 2015-12-03

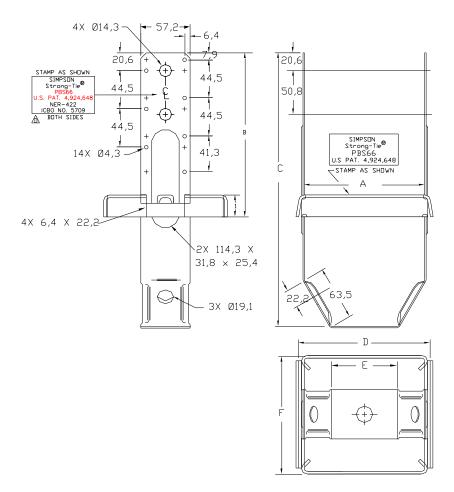


 Table D28-1: Size specification

Туре	Dimension [mm]					
	А	A B C D E F				
PBS46	90,5	187,3	270,7	101,6	25,4	138,1
PBS66	139,7	190,5	311,2	152,4	76,2	136,5

 Table D28-2: Material specification

Material thickness	Material Grades	Coating specification	
2,5 mm	G90 SS Grade 33 according to ASTM A-653	Galvanized	
Or stainless steel as described			

Table D28-3: Characteristic capacity

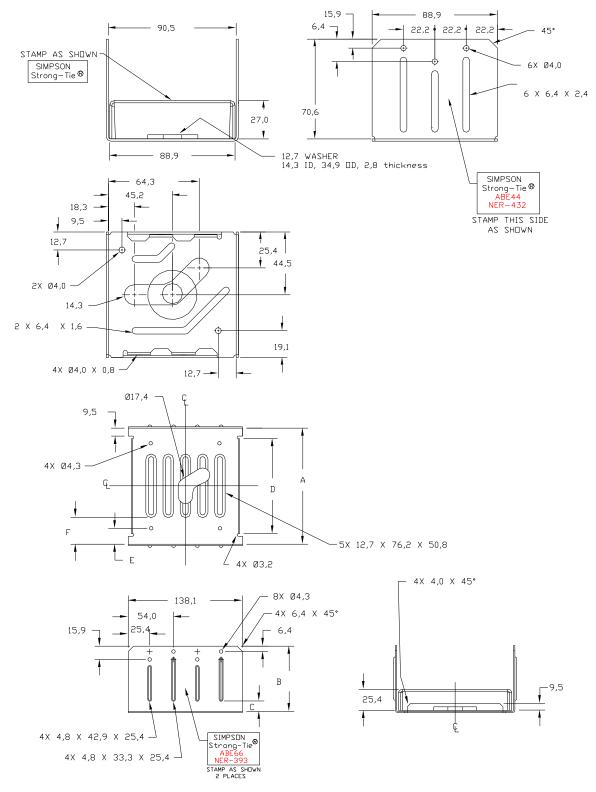
 $k_{modi} = 1,18$

			Load duration class (kN)				
Туре	Load Direction	Nails ¹⁾	Р	L	М	S	Ι
PBS 44	F_{R1}		42	46	49	52	57
	F_{R2}	CN 3,7 S 4,0	24 k _{mod} 16 k _{mod}				
PBS 46	F_{R1}		45	48	51	55	60
	F_{R2}	CN 3,7 S 4,0			24 k _{mod} 16 k _{mod}	25 16	
PBS 66	F_{R1}		60	65	69	73	81
	F_{R2}	CN 3,7 S 4,0			24 k _{mod} 16 k _{mod}	25 16	

¹⁾ Fastener to timber:

Der:ARS 3,1: Annular ring shank nail 3,1 x 35

CN 3,7: Connector nail 3,7 x 50 S 3,75: Smooth nail 3,75 x 75


S 4,0: Smooth nail 4,0 x90

²⁾ k_{mod} : load duration factor

D29: ABE

	alternative names			
Product Name	UK	France	DK	D
ABE				

Figure D29-1: Drawings

Table D29-1: Size specification

Туре	Dimension [mm]						
	А	A B C D E F					
ABE44	90,5	70,6	15,9	63	13	18	
ABE46	90,5	103,2	38,1	65,1	6,4	20,6	
ABE66	139,7	79,4	15,9	114,3	19,1	31,8	

Table D29-2: Material specification

Material thickness	Material Grades	Coating specification
1,5 to 2,6	G90 SS Grade 33 according to ASTM A-653	Galvanized
Or stainless steel as described		

Table D29-3: Characteristic capacity

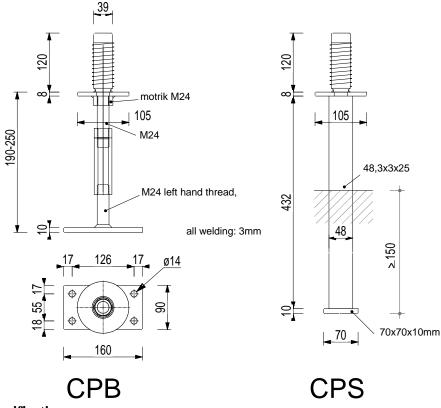
 $k_{modi}=1,18$

			Load duration class				
Туре	Load Direction	Nails ¹⁾	Р	L	Μ	S	Ι
ABE 44	F_{R1}		38	45	51	58	70
	F_{R2}	ARS 3,1 S 3,75	4,3	7,8	6,7 k _{mod} 7,8	7,8	7,8
ABE 46	F_{R1}		49	57	66	74	90
	F_{R2}	CN 3,7 S 4,0	15.8 k _{mod} 11 k _{mod}				
ABE 66	F_{R1}		79	92	105	118	144
	F_{R2}	CN 3,7 S 4,0			15.8 k _{mod} 11 k _{mod}		

¹⁾ Fastener to timber: ARS 3,1: Annular ring shank nail 3,1 x 35

CN 3,7: Connector nail 3,7 x 50

S 3,75: Smooth nail 3,75 x 75


S 4,0: Smooth nail 4,0 x90

²⁾ k_{mod} : load duration factor

D30: CPB and CPS

	alternative names				
Product Name	UK France DK D				
СРВ				CPB40	
CPS				CPS40	

Figure D30-1: Drawings

Table D30-1: Size specification n/a

Table D30-2: Material specification

Material thickness	Material Grades	Coating specification	
8, 10	S235JR according to EN 10025:2004	Hot din aslumined ecconding to	
Tube	S235 JR according to EN 10219:2004	Hot-dip galvanized according to EN ISO 1461:1999	
Threaded rod	S355 JO according to EN 10025:2004		
	Or stainless steel as		
	described		

Table D30-3: Characteristic capacity

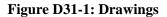
1 10 f 1 11 0	,87 for concrete have been used
$K_{mod} \equiv 1 + 18$ for speel and $K_{mod} \equiv 0$	1 X / Tor concrete have been lised
R_{III0}	, or for concrete have been used

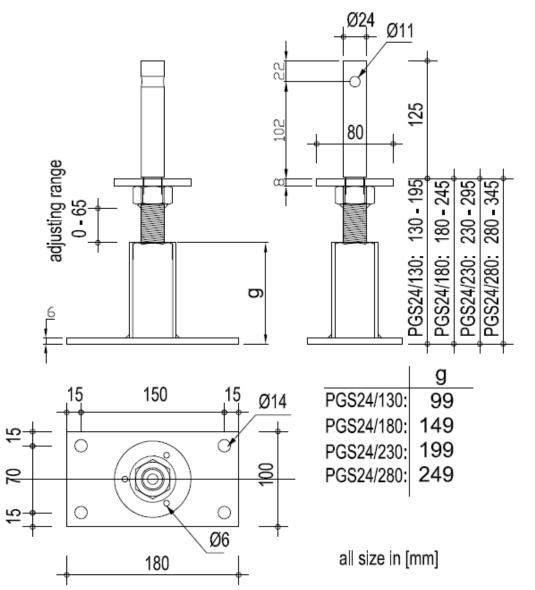
Load	timber size	characteri (1	CPB stic capacity kN) n. of
direction	[mm]	timber	steel ¹⁾
F ₁			61,0
F ₂	≥ 120	23,7	
F ₂ **		13,8	
	h =		
11 11	190		1,7
$H_1 H_2$	250		1,4

		CPS characteristic capacity (kN)		
Load	timber size	mi	n. of	
direction	[mm]	timber	steel ¹⁾	
F_1		170,3	118,7	
F_2		23,7		
F1 **	b≥120	110,7		
F ₂ **		13,8		
H_1 H_2		7,2	5,2	

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

** in case where download AND uplift is possible


For vertical load F1 and horizontal load H1 or H2 acting simultaneously it shall be verified that:


 $F_1 \,/\, F_{R,1} + H_i \,/\, H_{R,i} \,\leq 1$

D31: PGS

	alternative names						
Product Name	UK	France	DK	D			
PGS				PGS24/x			

x = size

Muster

Table D31-1: Size specification n/a

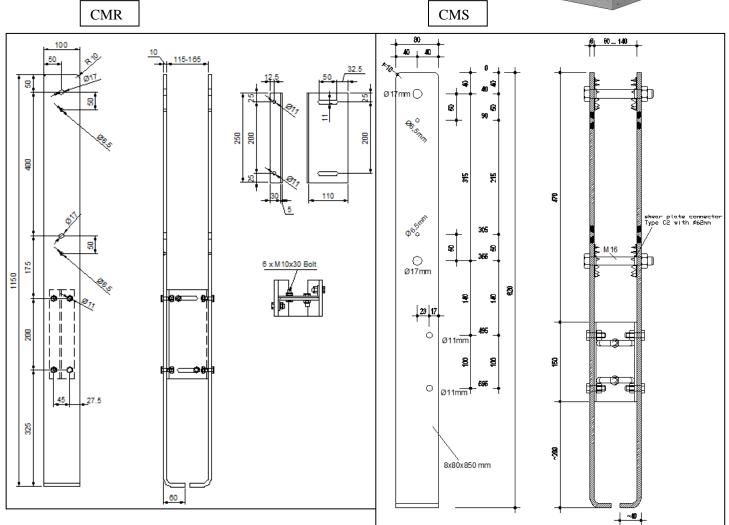
Table D31-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hat din columnized according to
Tube	S235 JR according to EN 10219:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S235JR according to EN 10025:2004 S235 JR according to EN	

Table D31-3: Characteristic capacity

 $k_{modi}=1,18$

		PGS		
		characteristic	c capacity [kN]	
Load	timber size	mi	n. of	
direction	[mm]	timber	steel ¹⁾	
F_1	100x100	96,1	91,3	
	b=80	5,0		
F ₂	b=100	5,6		
1.5	b=120	6,4		
	b=140	7,2		
	for timber size min. 100mm x100mm			
H_1	all		2,9	
	24/130		2,9	
H_2	24/180		2,5	
112	24/230		2,1	
	24/280		1,9	


¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations

D32: CMR and CMS

Product Name	alternative names				
	UK	France	DK	D	
CMR					
CMS					

Figure D32-1: Drawings

Table D32-1: Size specification n/a

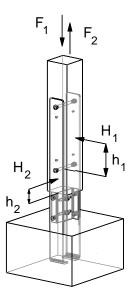
Table D32-2: Material specification

Material thickness	Material Grades	Coating specification
6, 8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Table D32-3: Characteristic capacity – for concrete C12

CMD

 $k_{modi}=1,18$


		CMR			
	Timber size	Characteristic Capacity R _{i,k} [kN] bzw. [kNm]			
Force direction	b	min. of			
uncetion	[mm]	timber	Steel 1)		
$F_1\!=\!F_2$	≥115	117,2			
H_1 for h_1 =200mm	≥115	99,0	21,3		
H ₂ for h ₂ =0mm	≥115	33,0	30,9		
M1	≥115	19,8	13,9		
	115	6,7			
	120	7,0			
M ₂	125	7,3			
IVI2	140	8,2			
	150	8,8			
	160	9,4			
¹⁾ for steel k _{mo}	d =1,0 shall be	used for all load	d durations		

 $k_{\text{mod}\,i} = 1,18$

CMS Characteristic Capacity $R_{i,k} \\$ [kN] bzw. [kNm] Timber size Force b min. of direction [mm] Steel 1) timber 96,9 $F_1\!=\!F_2$ ≥ 80 15,0 H_1 74,0 ≥ 80 H_2 21,1 19,8 ≥ 80 M_1 11,6 7,1 ≥ 80 3,9 80 100 4,8 M_2 5,8 120 140 6,8

 $k_{\text{mod }i} = 1,18$

 $^{1)}$ for steel k_{mod} =1,0 shall be used for all load durations

For a load H_1 acting in the height for CMR $h_1 > 200$ mm (for CMS $h_1 > 157$ mm) the load carrying capacity should not be taken as higher than:

For CMR : $H_{R1}(h) = H_{R1}(200) 200 / h_1$. for CMS: $H_{R1}(h) = H_{R1}(157) 157 / h_1$.

For a load H_2 acting in the height $h_2 > 0$ mm, the load carrying capacity should not be taken as higher than:

 $H_{R2}(h) = \frac{1}{2} F_{R2} a / h_2.$

where:

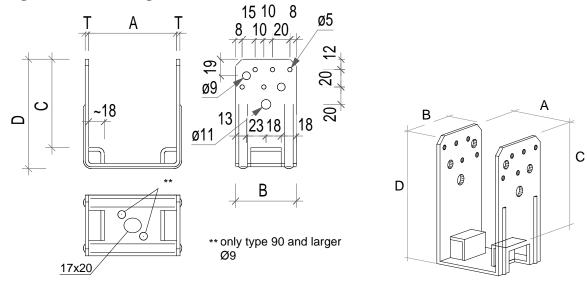
a The inner distance between the vertical steel plates e.g. the column depth.

For a vertical load F (either F_1 or F_2) and a horizontal load H_1 acting simultaneously it should be verified that $(F/F_{R1})^2 + (H_1/H_{R1})^2 \le 1$

For a vertical load F (either F_1 or F_2) and a horizontal load H_2 in the height h acting simultaneously it should be verified that $H_{R2}(h) \leq M_{R2}/(h(1 - F/F_{R1}))$

For combined loads the following check shall be made:

$$\left(\frac{F_{1/2,d}}{R_{1/2,d}}\right)^2 + \left(\frac{H_{1,d}}{R_{H1,d}} + \frac{M_{1,d}}{R_{M1,d}}\right)^2 \le 1$$


$$\left(\frac{F_{1/2,d}}{R_{1/2,d}} + \frac{M_{2,d}}{R_{M2,d}}\right)^2 + \left(\frac{H_{2,d}}{R_{H2,d}}\right)^2 \le 1$$

D33: PU / EMBU

	alternative names						
Product Name	UK	France	DK	D			
PUxx		EMBU					

xx = width of the PU

Figure D33-1: Drawings

Table D33-1: Size specification

		Dimensions [mm]							
Art.No.	А	В	С	D	Т	Ø			
РU70-В	71	70	107	131					
РU80-В	81	70	102	126		10 Ø5			
РU90-В	91	70	107	131	4,0	4 or 6 Ø9**			
РU100-В	101	70	102	126	4,0	2Ø11			
РU120-В	121	70	92	116		1 Ø17x20			
PU140-B	141	70	82	106					

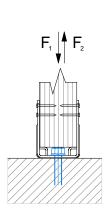
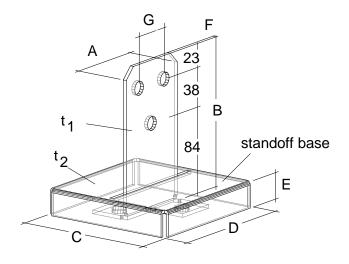

** only type 90 and larger have \emptyset 9 holes in the bottom plate.

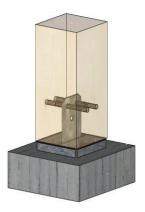
Table D33-2: Material specification

Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2008	Hot dip galvanized according to EN1461:2009
	Or stainless steel as described	

 Table D33-3: Characteristic capacity

load		PU characteristic c min.	apacity [kN]
direction	type		
F1	all	$\max \begin{cases} 19,1\\ n \times R_{lat.k} \end{cases}$	
	PU70-B		14,12/k _{mod}
	PU80-B		11,73/k _{mod}
F.	PU90-B	n x R _{lat k}	10,03/k _{mod}
F ₂ F ₂ Pt	РU100-В	II A R _{lat.k}	8,76/k _{mod}
	РU120-В		6,99/k _{mod}
	РU140-В		5,82/k _{mod}



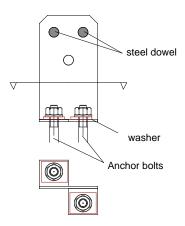

n = total number of nails. If the number of nails on each side is different, n is twice the number of nails in the side where the number is the minimum

D34: CPT

	alternative names					
Product Name	UK	France	DK	D		
CPT44Z						
CPT66Z						
CPT88Z						

Figure D34-1: Drawings

Table D34-1: Size specification


T					Din	nensions [1	mm]			
Туре	А	В	С	D	Е	F	G	holes 🗆	t_1	t ₂
CPT44Z	79,4	145	88,9	88,9	25,4	3,5	39,7	13,5	3,5	2,7
CPT66Z	114	145	136,5	136,5	25,4	3,5	57,1	13,5	3,5	2,7
CPT88Z	114	145	184	184	25,4	3,5	57,1	13,5	3,5	2,7

to use with the washer CPTZ-03, 35,7x28,6x3,5 with Ø13,5mm

Table D34-2: Material specification

Material thickness	Material Grades	Coating specification
3,5mm Standoff base:	steel SS Grade 33 according to ASTM A653	G185 according to ASTM A653
2,7mm		Corresponding to ~40µm

Figure D34-2: Steel dowel pattern

Table D34-3: Characteristic capacity

Characteristic capacities R_{i,k}[kN]

T	Characteristic capacities [kN]:					
Types	R _{1.k} R _{2.k} R _{H1.k} R _{H2.k}				ste	eel dowels to use
	download	uplift	lateral	lateral	No.	size [mm]
CPT44Z	$49.7/k_{mod}^{0.5}$	10.1 / k _{mod}	7.3	min(4.9, 3.5/k _{mod})	2	Ø13x70
CPT66Z	$76.3/k_{mod}^{0.5}$	14.7/k _{mod}	min(R _{2.k} x0.7, 9.1)	min(6.9, 5.0/k _{mod})	2	Ø13x121
CPT88Z	$103.0/k_{mod}^{0.5}$	14.7/k _{mod}	min(R _{2.k} x0.7 9.1)	min(6.9, 5.0/k _{mod})	2	Ø13x121

 $\Box (\mathbf{F}_{i.d} / \mathbf{R}_{i.d}) \leq 1$

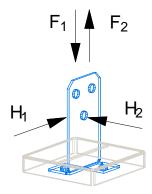
The design load has to be calculate always as: $R_{i.d} = R_{i.k} \, \times \, k_{mod} \, \, \textit{/} \, \gamma_M$

For combinated forces have to be checked: For $F_{i,d}$ is to insert also $H_{i,d}$.

The timbersize have to be minimum the size of the standoff base.

The anchorage has to be checked as following:

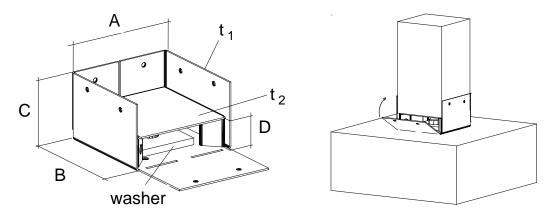
For force direction F₂: the anchorage of each of the both anchors has to be a capacity of minimium 0.88 x F_{2.d}


For force direction H_1 : the anchorage of each of the both anchors has to be a capacity of minimium 1.76 x $H_{1.d}$

For force direction H₂ type CPT44 :

the anchorage of each of the both anchors has to be a capacity of minimium 2.0 x $H_{2.d}$

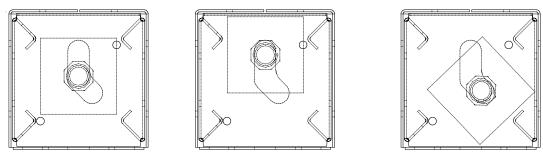
For force direction H_2 type CPT66 and 88 :


the anchorage of each of the both anchors has to be a capacity of minimium 1.1 x $H_{2.d}$

D35: ABW

	alternative names				
Product Name	UK	France	DK	D	
ABW44Z					
ABW44RZ					
ABW66Z					
ABW66RZ					

Figure D35-1: Drawings


Table D35-1: Size specification

References	Dimension	Dimensions [mm]							
	А	В	C	D	washer	t_1	t ₂		
ABW44Z	90,5	90,5	63,5	25,4	50x50x3,5	1,5	1,6		
ABW44RZ	101,6	101,6	50	25,4	50x50x3,5	1,5	1,6		
ABW66Z	139,7	139,7	76,2	25,4	76x76x6,0	1,8	2,7		
ABW66RZ	152,4	152,4	71,4	25,4	76x76x6,0	1,8	2,7		

Table D35-2: Material specification

Material thickness	Material Grades	Coating specification
1,5 / 1,8 mm Standoff base: 1,6 / 2,7 mm	SS Grade 33 according to ASTM A653	G185 according to ASTM A653 Corresponding to ~40µm G90 for washer 50x50x3,5mm
		Corresponding to ~20µm

Figure D35-2:

The washer is to place as shown before, preferable as shown left.

The Front-flat has to be turn up after the placing of the timber and screw tightly the bolt.

Table D35-3: Characteristic capacity

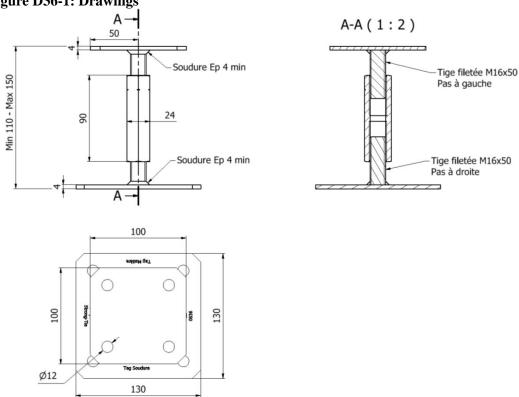
T	Characteristic capacities [kN]:					
Types	$R_{1.k}$	R _{2.k} nails to use		bolt to use		
	download	uplift	no	size [mm]	no	size [mm]
ABW44Z	53,9	3,1	8	3,75x75	1	Ø12
ABW44RZ	58,2	-/-	8	3,75x75	1	Ø12
ABW66Z	105,9	7,4	12	4,0x90	1	Ø12
ABW66RZ	110,4	min(6.6;6,9/k _{mod})	12	4,0x90	1	Ø12

Characteristic capacities R_{i,k}[kN]

The design load has to be calculate always as:

 $\mathbf{R}_{i.d} = \mathbf{R}_{i.k} \times \mathbf{k}_{mod} / \gamma_{M}$

For combinated forces have to be checked: $\sum (\mathbf{F}_{i.d} / \mathbf{R}_{i.d}) \leq 1$


The anchorage has to be checked as following:

For force direction F_2 : the anchorage of each of the both anchors has to be a capacity of minimium 1.0 x $F_{2.d}$

D36: APR110/150

	Alternative names				
Product Name	UK	France	Dk	D	
APR110/150					

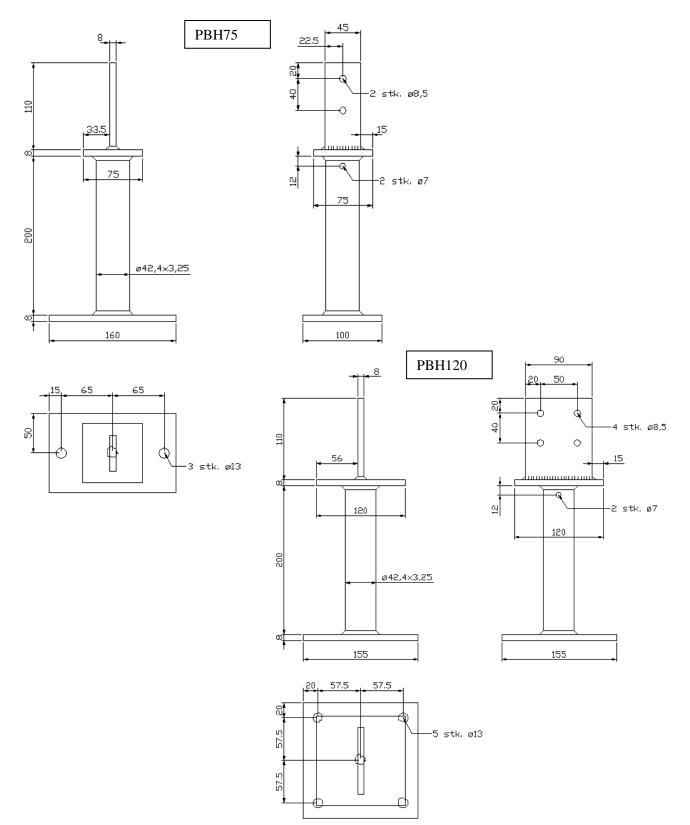
Figure D36-1: Drawings

Fasteners to timber: wood screw Ø10; Fasteners to concrete: anchor bolt M10

Table D36-1: Size specification

See drawing

Table D36-2: Material specification


Component	Material Grades	Coating specification
Plate	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A according to EN ISO 2081:2009
Tube	C15RPb according to EN10084:1999	Or Electroplated zinc Zn10/A (alkali zinc)
Threaded rod	steel class 4.6 according to ISO 898:1999	(untuit Zhite)
	Or Stainless steel as described	

Load Direction	Туре	Value (kN) - C24 - Download
F1 - Down	APR110/150	36.7

D37: PBH75 / PBH120

	alternative names				
Product Name	UK	France	DK	D	
PBH75					
PBH120					

Figure D37-1: Drawings

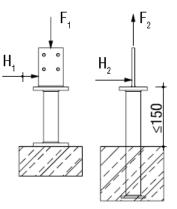
Table D37-1: Size specification

See drawing

Table D37-2: Material specification

Material thickness	Material Grades	Coating specification		
8	S235JR according to EN	Hot dip galvanized according to		
tube	10025:2008	EN1461:2009		
	Or stainless steel as			
	described			

Table D37-3: Characteristic capacity - for concrete C12

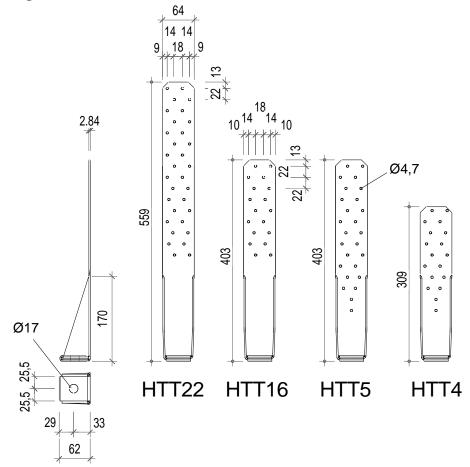

 $k_{modi} = 1,18$

Load direction	Width of timber [mm]	PBH75 characteristic capacity [kN] min. of		Width of timber [mm]	characteristic mir	H120 capacity [kN] n. of
		timber ¹⁾	steel 2)		timber 1)	steel 2)
F ₁	all	105.5	109.5	all	-	109.5
	80	8.1		120		
F_2	100	9.5	-	140	20.7	-
	120	10.4		160		
	80	5.5		120		
H_1	100	6.5	5.4	140	-	5.4
	120	7.1		160		
	80	5.8	4.4	120	5.5/kmod^0.8	
H_2	100	5.0/kmod^0.8	-	140	6.0/kmod^0.8	-
	120	5.5/kmod^0.8	-	160	6.0/kmod	

1) Characteristic Capacities are based on C24 timber

2) for steel kmod = 1,0 shall be used for all load durations

Figure D37-2: Application



Hold Downs

D60: HTT and LTT

	alternative names			
Product Name	UK	France	DK	D
HTTx				
LTT20B				

Figure D60-1: Drawings

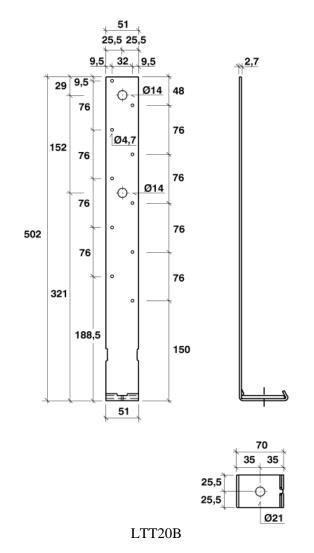


Table D60-1: Size specification n/a

Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653	
	corresponding to S235 JR according to EN 10025	
	Or stainless steel as	
	described	

The nails in the vertical flap have to be arranged equally left and right about the centre-line.

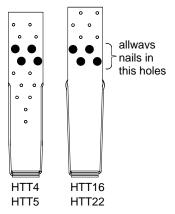

	Minimum	Maximum
LTT20B	2	10
HTT4	4	18
HTT5	4	26
HTT16	4	18
HTT22	4	32

Table D60-3: Characteristic capacity

HTT4/5/16/22

The characteristic load-carrying capacity of one Hold Down HTT4/5/16/22 is calculated as:

$$R_{1,k} = \min \begin{cases} (n-3,5) \times R_{lat,k} \\ 25,2 \times R_{ax,k} \\ \frac{43,0}{k_{\text{mod}}} \end{cases}$$

It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anchor,d}} \le 1$$

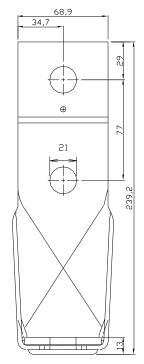
The values are also applicable for a connection with a gap between the short flange of the HTT and the bearing support.

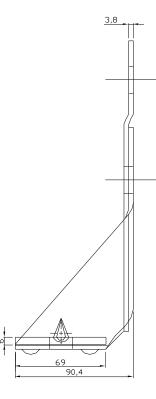
LTT20B

The characteristic load-carrying capacity of one Hold Down LTT 20B is calculated as:

$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 2,85kN/k_{mod} \end{cases}$$

$R_{lat,k} =$	characteristic lateral load-carrying capacity of one nail
$k_{mod} =$	load duration factor
<i>n</i> =	number of nails
$R_{anchor,d} =$	Tensile design capacity of the anchor bolt in the concrete


It must be checked, that the anchor fulfils the following formula:


$$\frac{1,5 \times F_{1,d}}{R_{anchor,d}} \le 1$$

D61: HD5A

	alternative names			
Product Name	UK	France	DK	D
HD5A				

Figure D61-1: Drawings

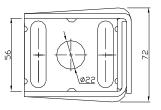
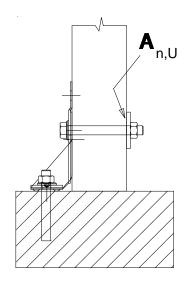


Table D60-1: Size specification $n\!/\!a$

Table D61-2: Material specification

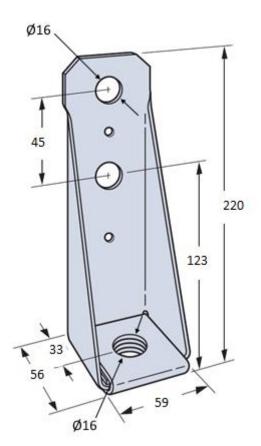
Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653 corresponding to S235 JR	
	according to EN 10025	
	Or stainless steel as	
	described	


Table D61-3: Characteristic capacity

The characteristic load-carrying capacity of one Hold Down HD5A is calculated as:

$$R_{1,k} = \min \begin{cases} 8,2kN/k_{mod} \\ 4,15 \times A_{n,U} \times f_{c,90,k} \end{cases}$$

It must be checked, that the anchor fulfils the following formula:


$$\frac{F_{\mathrm{1,d}}}{R_{\mathrm{anchor,d}}} \leq 1$$

D62: HD3B

	alternative names			
Product Name	UK	France	DK	D
HD3B				

Figure D61-1: Drawings

Table D62-1: Size specificationSee drawing

Table D61-2:	Material	specification
--------------	----------	---------------

Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653 corresponding to S235 JR	
	according to EN 10025	
	Or stainless steel as	
	described	

Table D61-3: Characteristic capacity

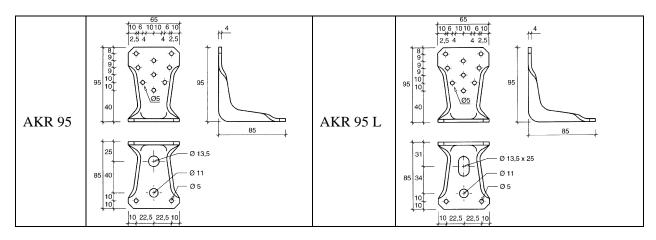
Model	Post	Number and Ø post	Ø on header	Characteristic values (kN) uplift
	Steel	2 Ø16	Ø16	39.89
HD3B	Timber	2 Ø16	Ø16	15.59
F	100 100 1			

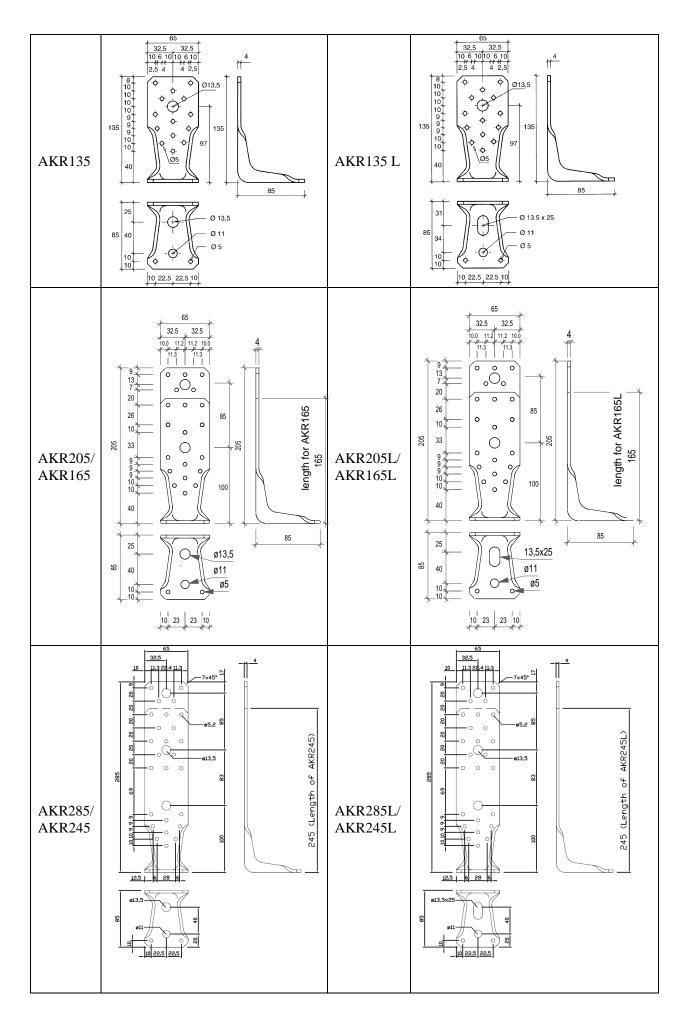
For a timber with a size $< 100 \times 100$ mm: the capacity of the bolts in the timber are to be checked: n x F_{v,RK}; with n= number of bolts

It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anchord}} \le 1$$

D63: AKR


	alternative names					
Product Name	UK France DK D					
AKR						


.... with following numbers and letters as shown in the table below

Gaaste	GATOGE		
S235JR	S250GD	stainless steel	
4,0mm	3,0mm	3,0mm	
AKR95G	AKR95x3	AKR95S	
AKR95LG	AKR95x3L	AKR95LS	
AKR135G	AKR135x3	AKR135S	
AKR135LG	AKR135x3L	AKR135LS	
AKR165G	AKR165x3	AKR165S	as a option of
AKR165LG	AKR165x3L	AKR165LS	AKR205
AKR205G	AKR205x3	AKR205S	
AKR205LG	AKR205x3L	AKR205LS	
AKR245G	AKR245x3	AKR245S	as a option of
AKR245LG	AKR245x3L	AKR245LS	AKR285
AKR285G	AKR285x3	AKR285S	
AKR285LG	AKR285x3L	AKR285LS	

The letter "L" in the name shows, that a **long hole** is in the short flange.

Figure D63-1: Drawings

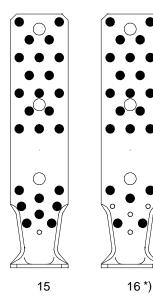
The thickness may also be 3,0 mm. See material specification.

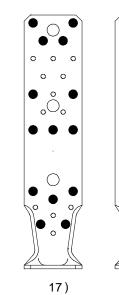
Table D63-1: Size specification n/a

Tuble Doo at Mater		
Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
3	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
3	Or stainless steel as described	

Table D63-2: Material specification

The types 165 and 245 are respectively options of the AKR205 and 285 and can only be cut at the factory (with chamfer). The corresponding nail pattern are given respectively in no 11 and no 20.

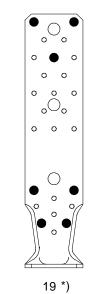

A nail pattern of a small AKR can be used for a larger AKR also, with using the capacity for the nail pattern of the smaller one.

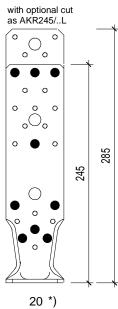

The nail patterns 15 and 16 are only for force direction F_1 .

The nail pattern "partial/column" are for connection to beam and also for column. The nail pattern "column" are also possible for a connection to a beam.

For connection to a column, nail pattern with nails in the lower part as shown below or with less nails are only to be considered :

Figure D63-2: Nail pattern AKR95/ ..L ົດ C C *) *) = connection to column possible AKR135/..L С С С *) *) AKR205/..L with optional cut as AKR165/..L Ó ₀∪₀ °0° $^{\circ}$ $^{\circ}O_{\circ}$ a C 0/ 12 *) 13 *) AKR285/ ..L


Ó


 \bigcirc

 $_{\circ}\bigcirc_{\circ}$

 \bigcirc

18 *)

Characteristic capacities

Table D63-3: Load direction F ₁	for one AKR [kN]
--	------------------

	nail	n	CNA4,0x40		CNA4,0x5	CNA4,0x50		0
Туре	pattern		Rbend,nail,k	R _{1,nail,k}	Rbend, nail, k	R _{1,nail,k}	Rbend, nail, k	R _{1,nail,k}
AKR95	1	8	6,60	8,78	8,80	11,32	11,00	13,24
AKR95	2	5	2,99	5,75	3,98	7,39	4,98	8,59
AKR95	3	5	6,31	5,15	8,41	6,67	10,52	7,86
AKR95	4	4	5,06	4,13	6,75	5,35	8,44	6,30
AKR135	5	13	4,34	15,89	5,79	20,34	7,24	23,46
AKR135	6	9	4,34	10,60	5,79	13,60	7,24	15,77
AKR135	7	8	1,97	10,24	2,62	13,06	3,28	14,97
AKR135	8	5	1,97	6,28	2,62	8,02	3,28	9,22
AKR205	9	10	4,34	9,50	5,79	12,36	7,24	14,67
AKR205	10	14	4,34	16,71	5,79	21,43	7,24	24,80
AKR205/AKR165	11	11	4,34	14,61	5,79	18,57	7,24	21,16
AKR205	12	8	1,97	7,15	2,62	9,32	3,28	11,12
AKR205	13	3			See Table	D63-4		
AKR205	14	8	0,80	8,54	1,07	11,04	1,34	12,95
AKR285	15	25	4,34	22,62	5,79	29,49	7,24	35,16
AKR285	16	22	1,97	20,83	2,62	27,09	3,28	32,17
AKR285	17	14	1,97	13,97	2,62	18,12	3,28	21,40
AKR285	18	3			See Table	D63-4		
AKR285	19	7	1,22	5,22	1,63	6,86	2,04	8,29
AKR285/AKR245	20	9	1,57	7,14	2,09	9,35	2,61	11,27
AKR95L	1	8	4,46	6,65	5,95	8,70	7,43	10,44
AKR95L	2	5	2,02	4,41	2,69	5,76	3,36	6,88
AKR95L	3	5	4,26	3,85	5,68	5,05	7,11	6,09
AKR95L	4	4	3,42	3,09	4,56	4,05	5,70	4,88
AKR135L	5	13	2,93	12,44	3,91	16,17	4,89	19,18
AKR135L	6	9	2,93	8,19	3,91	10,68	4,89	12,72
AKR135L	7	8	1,33	8,15	1,77	10,57	2,21	12,46
AKR135L	8	5	1,33	4,97	1,77	6,44	2,21	7,62
AKR205L	9	10	2,93	6,98	3,91	9,18	4,89	11,14
AKR205L	10	14	2,93	12,98	3,91	16,89	4,89	20,10
AKR205L/AKR165L	11	11	2,93	11,81	3,91	15,25	4,89	17,88
AKR205L	12	8	1,33	5,20	1,77	6,85	2,21	8,34
AKR205L	13	3		See Table D63-4		D63-4		
AKR205L	14	8	0,54	6,43	0,72	8,42	0,91	10,14
AKR285L	15	25	2,93	16,48	3,91	21,71	4,89	26,43
AKR285L	16	22	1,33	15,29	1,77	20,12	2,21	24,43
AKR285L	17	14	1,33	10,36	1,77	13,60	2,21	16,45
AKR285L	18	3			See Table	D63-4		
AKR285L	19	7	0,83	3,71	1,10	4,91	1,38	6,03
AKR285L/AKR245L	20	9	1,06	5,11	1,41	6,75	1,76	8,27

n = number of nails according to the nail pattern

For an AKR with a thickness of 4,0mm:
$$R_{1,k} = \min \begin{cases} R_{1,nail,k} \\ \frac{21,43kN}{k_{mod}} + R_{bend,nail,k} \end{cases}$$

For an AKR with a thickness of 3,0mm: $R_{1,k} = \min \begin{cases} R_{1,nail,k} \\ \frac{12,52kN}{k_{mod}} + R_{bend,nail,k} \end{cases}$ with $R_{1,nail,k}$ and $R_{bend,nail,k}$ are given in the table

The force shall act in the middle of the beam/column, or the eccentricity may be overcome by clamping or an extra calculated force F₄ shall be considered.

The values are also applicable for a connection with a gap between the short flange of the AKR and the bearing, for F_1 load direction only.

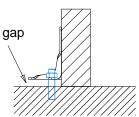
The bolt shall have a capacity to sustain an axial force of $F_{1,d}$. Instead of bolts also timber screws with washers can be applied to the bottom leg for a pure uplift force connection.

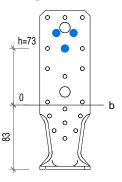
Table D63-4: Load direction F₁ for nail pattern 13 an 18:

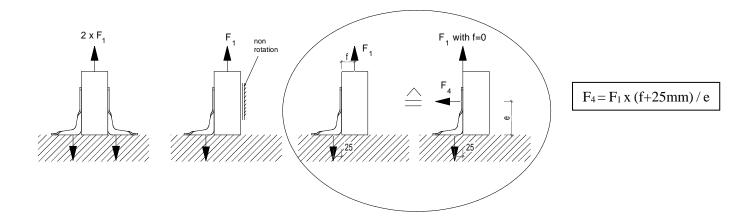
	char	characteristic capacity limit by the nails: $R_{1.nail.k}$ [kN]; n=3 nails							
	1	type AKR		typ	e AKR…L				
	h=								
nails	73	113	153	73	113	153			
CNA4,0x40	3,35	3,83	4,17	2,55	3,04	3,44			
CNA4,0x50	4,32	4,88	5,28	3,33	3,94	4,42			
CNA4,0x60	5,04	5,60	5,97	3,99	4,65	5,15			

h = place of the lowermost nail above the line "b". Nail pattern 13: h=73mm, nail pattern 18: h=113mm

	R _{F.1.i.k} [kN]
AKR205	4,89
AKR285	4,02
AKR205L	3,30
AKR285L	2,72


 $R_{F1,i,k}$ is based on the bending


With i = h


$R_{1,k} = min(R_{1.nail.k}; R_{F.1.i.k})$

h = distance of the lowermost nail to line b

The capacity $R_{1.nail,i,k}$ shall be calculated as design capacity with the current k_{mod} , the capacity $R_{F1,i,k}$ shall be calculated with k_{mod} = 1,0 for all load durations.

Table D63-5: Load direction $F_{2/3} {\rm : } R_{2/3} {\rm [kN]}$ for one AKR

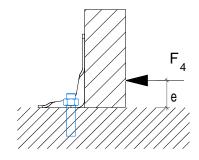
	nail patter		for CNA	for CNA	for CNA
Туре	n	n	4,0x40	4,0x50	4,0x60
AKR95	1	8	2,5	3,1	3,5
AKR95	2	5	1,8	2,2	2,5
AKR95	3	5	1,6	2,0	2,2
AKR95	4	4	1,5	1,9	2,1
AKR135	5	13	4,0	5,0	5,6
AKR135	6	9	3,0	3,7	4,2
AKR135	7	8	2,8	3,5	3,9
AKR135	8	5	1,9	2,4	2,8
AKR205	9	10	3,3	4,2	4,7
AKR205	10	14	3,9	5,0	5,9
AKR205/AKR165	11	11	3,5	4,5	5,2
AKR205	12	8	2,4	3,1	3,6
AKR205	13	3	n/a	n/a	n/a
AKR205	14	8	2,8	3,5	4,0
AKR285	15	25	4,4	5,8	7,0
AKR285	16	22	2,9	3,8	4,7
AKR285	17	14	2,8	3,6	4,4
AKR285	18	3	n/a	n/a	n/a
AKR285	19	7	2,2	2,9	3,4
AKR285/AKR245	20	8	2,9	3,7	4,4
AKR95L	1	8	2,2	2,8	3,2
AKR95L	2	5	1,5	2,0	2,3
AKR95L	3	5	1,4	1,8	2,1
AKR95L	4	4	1,3	1,7	1,9
AKR135L	5	13	3,6	4,6	5,2
AKR135L	6	9	2,6	3,3	3,8
AKR135L	7	8	2,4	3,1	3,6
AKR135L	8	5	1,6	2,1	2,4
AKR205L	9	10	2,7	3,5	4,1

AKR205L	10	14	3,1	4,0	4,8
AKR205L/AKR165L	11	11	2,9	3,7	4,4
AKR205L	12	8	1,9	2,5	3,0
AKR205L	13	3	n/a	n/a	n/a
AKR205L	14	8	2,3	3,0	3,5
AKR285L	15	25	3,3	4,4	5,4
AKR285L	16	22	2,1	2,8	3,5
AKR285L	17	14	2,1	2,7	3,4
AKR285L	18	3	n/a	n/a	n/a
AKR285L	19	7	1,7	2,2	2,7
AKR285L/AKR245L	20	9	2,2	2,9	3,5

n = number of nails according to the nail pattern

The connected beam shall be free of twisting, so that no rotation occurs. For a connection to a column with this load direction, it is recommended to use 2 pieces of AKR.

The bolt shall have a min. capacity R_d to sustain an axial force of $F_{2,d} \ge 0,2\,$ and a lateral force of $F_{2,d} / n_{AKR}$. with $n_{AKR} = number$ of AKR


Load direction F₄ (only for types without long hole)

for AKR with a thickness of 4,0mm:

$$R_{4,k} = \min \begin{cases} \frac{10,6kN \times 50mm}{e \times k_{\text{mod}}} \\ \frac{51kNmm}{(e - 71mmm) \times k_{\text{mod}}} \end{cases}$$

for AKR with a thickness of 3,0mm:

$$R_{4,k} = \min \begin{cases} \frac{6,3kN \times 50mm}{e \times k_{\text{mod}}} \\ \frac{28,7kNmm}{(e - 71mmm) \times k_{\text{mod}}} \end{cases}$$

Negative values may not be considered, e shall be inserted in [mm]

The bolt shall have a capacity to sustain an axial force of $F_{4,d} \ge 1,5$, and a lateral force of $F_{4,d} \ge 1,0$.

	nail			e < 71		e > 71
Туре	pattern	n	\mathbf{X}_1	emax force	\mathbf{X}_1	emax force
AKR95	1	8	402		378	
AKR95	2	5	244		256	
AKR95	3	5	319		215	
AKR95	4	4	257		172	
AKR135	5	13	419		742	
AKR135	6	9	357		480	
AKR135	7	8	247		500	
AKR135	8	5	197		301	
AKR205	9	10	354		382	
AKR205	10	14	402	131-e	378	e - 10
AKR205/AKR165	11	11	354	151-6	382	e - 10
AKR205	12	8	244		256	
AKR205	13	3				
AKR205	14	8	210		363	
AKR285	15	25	402		378	
AKR285	16	22	244		256	
AKR285	17	14	244		256	
AKR285	18	3				
AKR285	19	7	210		196	
AKR285/AKR245	20	9	274		271	

 Table D63-6: Load direction F5 (only for types without long hole)

n = number of nails according to the nail pattern

$$R_{5,k} = \min \begin{cases} \frac{X_1 \times R_{ax,k}}{e_{\max, force}} \\ \frac{536kNmm}{e \times k_{mod}} \\ \frac{51kNmm}{(e - 71mm) \times k_{mod}} \end{cases}$$

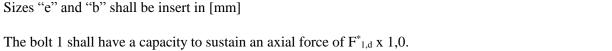
b F₅ e

with $R_{ax,k}$ [kN] = the axial characteristic capacity of the used nail sizes "e" shall be inserted in [mm]

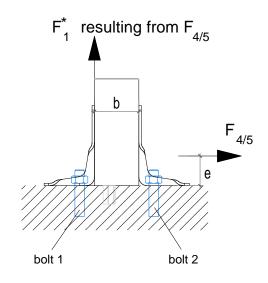
Negative values may not be considered.

The bolt shall have a min. capacity R_d to sustain an axial force of $F_{5,d} x 1,0$ and a lateral force of $F_{5,d} x 1,0$.

Туре	nail pattern	Characteristic capacity R _{4/5,k} [kN]
all with a thickness of 4,0mm	all	26,5/k _{mod}
all with thickness of 3,0mm	all	15,75/k _{mod}

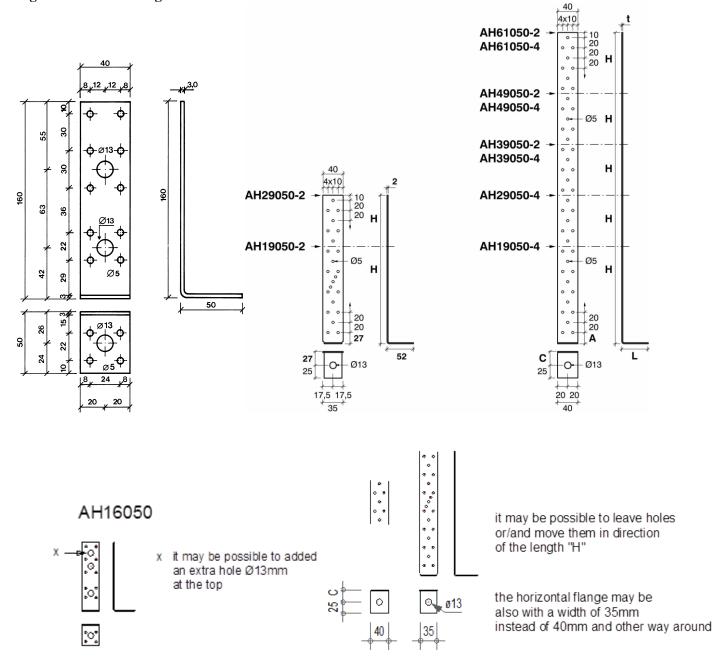

Table D63-7: Load direction F_{4/5} (only for types without long hole)

The size b shall be a minimum of 60mm.


The "left" AKR shall be checked additionaly for a tension force:

$$F_{1,d}^* = \frac{F_{4/5,d} \times (e - 16,5mm)}{b + 83mm}$$

Sizes "e" and "b" shall be insert in [mm]


The bolt 2 shall have a capacity to sustain an axial force of $F_{4/5d} \ge 0.5$, and a lateral force of $F_{4/5,d} \ge 1.0$.

D64: AH

	alternative names				
Product Name	UK	France	DK	D	
AHx					

Figure D64-1: Drawings

Table D64-1: Size specification

Туре	Н	L	t	А	С
	mm	mm	mm	mm	mm
AH16050	160	50	3		
AH19050-2	192	52	2		
AH29050-2	292	52	2		
AH39050-2	392	52	2	22	27
AH49050-2	492	52	2	22	27
AH61050-2	612	52	2	22	27
AH19050-4	194	54	4	24	29
AH29050-4	294	54	4	24	29
AH39050-4	394	54	4	24	29
AH49050-4	494	54	4	24	29
AH61050-4	614	54	4	24	29

Other lengths (H) are possible, for the same cross section the same capacity is given.

Table D64-2: Material specification

Material thickness	Material Grades	Coating specification
2;3;4	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
Washer: 10,0	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Figure D64-2: Nail pattern

	Minimum	Maximum
		Purlin = 10
AH16050	2	column = 6, the 4 lower
		holes can not be used
		Purlin: use all holes other
tunes 100mm and up		than the lower 2 holes
types 190xx and up	2	Column: use all holes other
		than the lower 3 holes

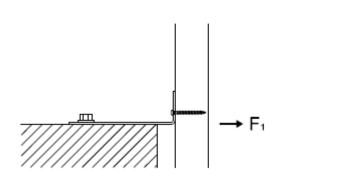
Table D64-3: Characteristic capacity

Load direction F_{1,k}

	characteristic capacity (kN)		
	min. of		
type	timber	steel 1)	
AH16050			
AH19050/2	-		
AH29050/2			
AH39050/2			
AH49050/2			
AH61050/2	n x R _{lat,k}	15,0	
AH19050/4			
AH29050/4			
AH39050/4			
AH49050/4			
AH61050/4			

¹⁾ for steel $k_{mod} = 1,0$ shall be used for all load durations $R_{lat,k} = lateral$ characteristic capacity of the nail

The washer to use is: US40/50/10.

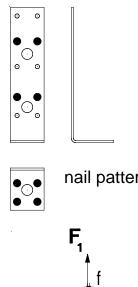

It must be checked, that the anchor fulfils the following formula:

$$\frac{3 \times F_{1,d}}{R_{anchord}} \le 1$$

Table D64-4: Characteristic capacity (F1 – downward)

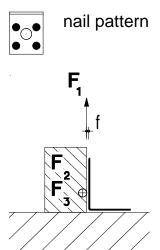
Fastener Specification	Characteristic capacity of Connector (kN)	
2 pcs CSA5,0x40 / 1 pcs Concrete Screw/Bolt	3.3	

It is assumed that the connection cannot rotate.



AH16050

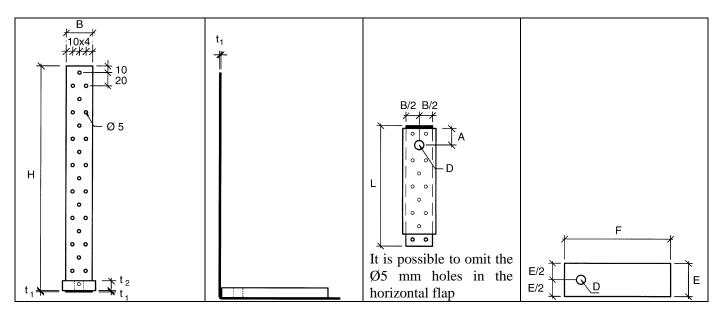
For a connection between timber to timber members (column or beam) The connection is possible with a beam or a column at the vertical flap.


Table 64-5With connector nails 4,0x40

angle bracket AH16050 with connector nails 4,0x40						
		1 Angle	Bracket	2 A	ngle Brad	cket
load duration	k _{mod}	R _{1,k} R _{2,k} R _{2,k}		R _{1,k}	R _{2,k} R _{3,k}	R _{4,k} R _{5,k}
Р	0,6	0,6	1,2	1,6	2,4	1,3
L	0,7	0,7	1,4	1,9	2,8	1,5
М	0,8	0,8	1,6	2,2	3,2	1,7
S	0,9	0,9	1,8	2,4	3,6	1,9
	1,1	1,1	2,2	2,7	4,4	2,1

Table 64-6With connector nails 4,0x60

ang	angle bracket AH16050 with connector nails 4,0x60					
		1 Angle	Bracket	2 A	ngle Brad	cket
load duration	k _{mod}	R _{1,k}	R _{2,k} R _{3,k}	R _{1,k}	R _{2,k} R _{3,k}	R _{4,k} R _{5,k}
Р	0,6	1,0	1,6	2,7	3,1	2,1
L	0,7	1,1	1,8	2,7	3,6	2,1
М	0,8	1,2	2,1	2,7	4,2	2,1
S	0,9	1,2	2,3	3,0	4,7	2,3
I	1,1	1,2	2,9	3,9	5,7	2,9


For using the capacity of use with one angle bracket it is assumed, the distance f will be $\sim 0 \text{ mm}$

D65: HD Tension Tie

	alternative names			
Product Name	UK	France	DK	D
HDxx				

xx = size and size of bolt

Figure D65-1: Drawings

Table D65-1: Size specification

Туре	Н	L	В	t_1	t ₂	А	D*	Е	F
HD340M12	340	182	40	2,0	15	25	12,5 to 14	50	160
HD400M16	400	123	40	3,0	15	25	16,5 to 18	60	110
HD420M16	420	222	60	2,0	20	35	16,5 to 18	60	200
HD420M20	420	102	60	2,0	20	35	20,5 to 22	60	85
HD480M20	480	123	60	2,5	20	35	20,5 to 22	70	115
HD140M12	140	90	60	2,0	12	25	14	50	90

* D refers to the hole diameter in the washer. Intermediate values are possible. The hole in the sheet-metal part below the washer can be up to +2 mm larger than the hole in the washer

Other lengths (\hat{H}) and other width (B) are possible, for the same cross section the same capacity is given.

Table D65-2: Material specification

Material thickness	Material Grades	Coating specification
2;3	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
Washer 15; 20	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Figure D64-2: Nail pattern

	Minimum	Maximum
All types	2	All holes can be used by considering the minimum distance of the nails to the end of timber
	4	distance of the name to the end of timber

Table D65-3: Characteristic capacity

The characteristic load-carrying capacity in N of one Tension Tie is calculated as:

$$R_{1,k} = \min \begin{cases} \frac{W_{pl} \times 277}{A \times k_{mod}} \\ A_{gross} \times 223 / k_{mod} \\ n_{ef} \times R_{lat,k} \end{cases}$$

$A_{gross} =$	gross cross sectional area of the vertical flap in $mm^2 = B t_1$, see table below
$\mathbf{R}_{\mathrm{la,k}} =$	characteristic lateral Load-carrying capacity of one connector nail
$n_{ef} = n^{k ef}$	effective number of nails with k_{ef} by EC 5, table 8.1
$k_r =$	reduction factor, see table below
$\mathbf{k}_{mod} =$	load-duration factor
$W_{pl} =$	the plastic section modulus of the lower part; see table below
A =	distance of the bolt hole to the vertical flange – as given in table D65-1

	A gross		\mathbf{W}_{pl}
typ	[mm ²]	k r	[mm ³]
HD340M12	80	0.84	2025
HD400M16	120	0.76	2363
HD420M16	120	0.82	4200
HD420M20	120	0.56	3800
HD480M20	150	0.68	4800
HD140M12	120	0.71	1296

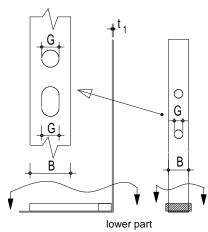
It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anchost} \times k_r} \le 1$$

A connection to the timber can also be occurring as shown next:

Larger holes are possible for bolts or other fastener instead of a nail pattern.

For this cases the value $R_{1,k}$ shall be calculate as:


$$R_{1,k} = A_{net} \times 295 N / mm^2$$
 with $A_{net} = (B - G) \times t_1$

For $R_{\text{lat},k}$ shall be use the characteristic lateral load-carrying capacity of the used fastener.

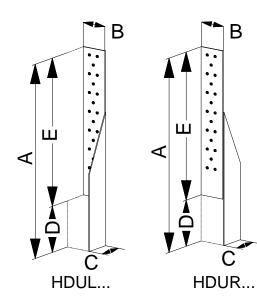
The lower part shall be as described before by using the W_{pl} from the table before.

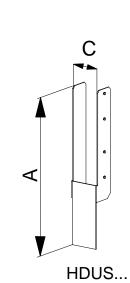
Installation on a timber floor:

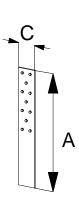
For the pressure area it may be possible to use screws for the pressure. In this case the calculation for the screws may be done separately according to the following system : see after table D66-3 (HD2P)

D66: HD2P based on components

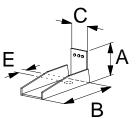
	alternative names					
Product Name	UK	France	DK	D		
HDULx						
HDURx						
HDUSx						
HDUFx						
HDBUx						
HDBWx						
HD2P60G *						
HD2PL40G **						

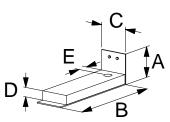

В

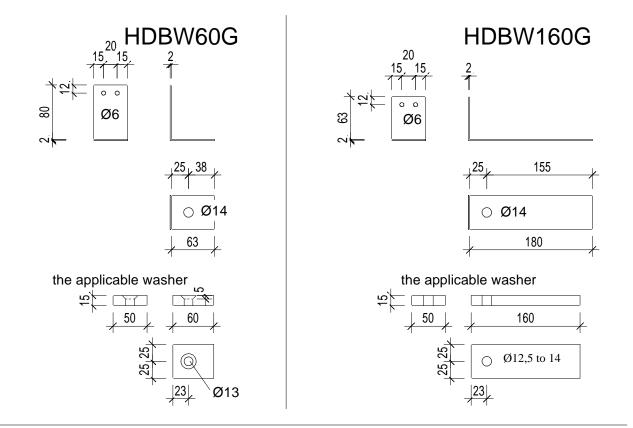

• ۰.

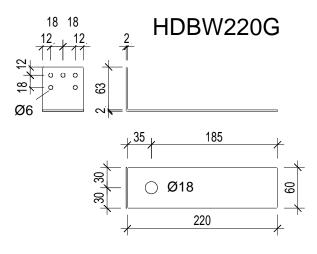

C

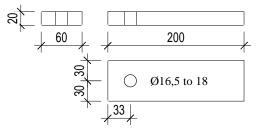
from components HDUF400 and HDBU220from components HDUF250 and HDBU163

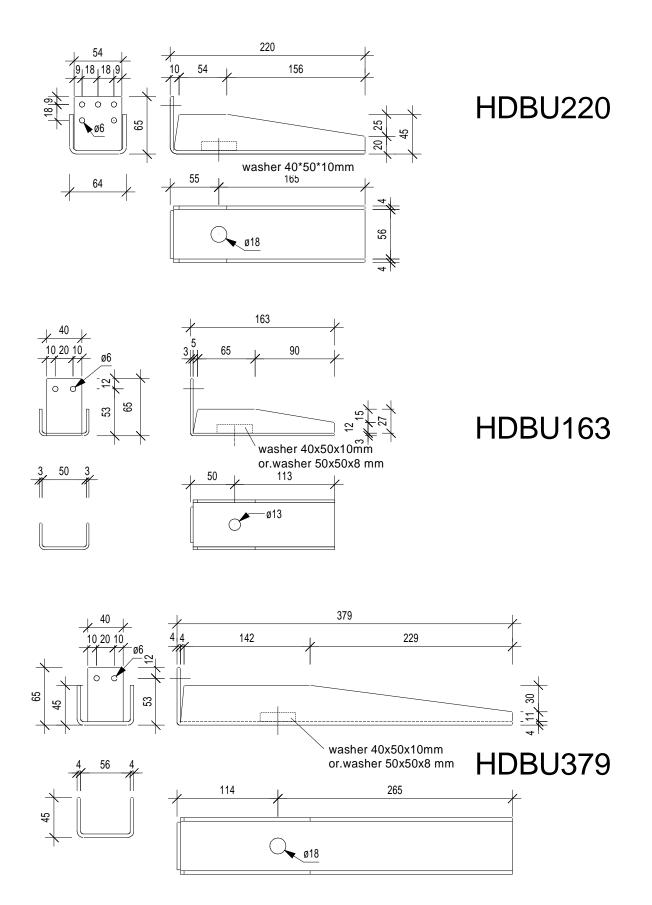

Figure D66-1: Drawings

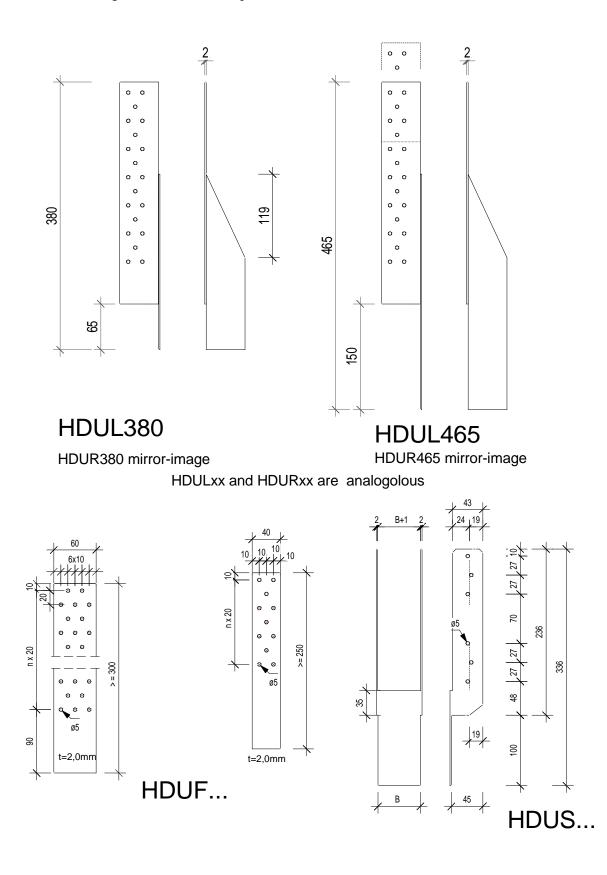



HDUF...




HDBU...


HDBW...



the applicable washer

			size [mm]				
	thickness	Α	В	C	D	Е	Ø
HDUF250G	2,0	250		40			5
HDUF400G	2,0	400		60			5
HDUS336G	2,0	336	>40				5
HDUL380G	2,0	380	55	52,5 - 55,0	65	315	5
HDUR380G	2,0	380	55	52,5 - 55,0	65	315	5
HDUL465G	2,0	465	55	52,5 - 55,0	150	315	5
HDUR465G	2,0	465	55	52,5 - 55,0	150	315	5
HDUL xx G	2,0	\geq 300	55	52,5 - 55,0	≥ 65	A - D	5
HDUR xx G	2,0	\geq 300	55	52,5 - 55,0	≥ 65	A - D	5
HDUF40XG	2,0	\geq 250		\geq 40			5
HDUF60XG	2,0	≥ 250		60			5
HDBU163G	3,0	65	163	40		50	13 1)
HDBU220G	4,0	65	220	54		55	18 1) 2)
HDBU379G	4,0	65	379	40		114	18 1) 2)
HDBW60G	2,0+15,0	82	65	50	15	27	13,0
HDBW160G	2,0 + 15,0	65	182	50	15	27	12,53)
HDBW200G	2,0+20,0	65	222	60	20	37	16,54)

Table D66-1: Size specification

Together with: ¹⁾ US40/50/10G ; ²⁾ US50/50/8G; ³⁾ up to 14 mm; ⁴⁾ up to 18 mm For HDBUx and HDBWx (bottom parts) are possible to modify the size A

The connection between the upper and lower part governed by the self tapping screws EJOT JT2-3-5,5x25 or with equivalent screws.

		1	1	uŗ	per pa	arts	1	1	
combinations	HDUF250	HDUF400	HDUS336	HDUR380	HDUR380	HDUL465	HDUR465	HDUF40X	HDUF60X
HDBU163G	0	0	0	0	0	0	0	0	
HDBU220G		0		0	0	0	0		0
HDBU163G HDBU220G HDBU379G	0	0	0	0	0	0	0	0	0
⊢ HDBW60G	0	0	0	0	0	0	0	0	
HDBW160G	0	0	0	0	0	0	0	0	
HDBW200G		0	0	0	0	0	0		0

The free cells show non logical or non possible combinations.

Table D66-2: Material specification

Material thickness	Material Grades	Coating specification
2;3	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
Washer 15; 20	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

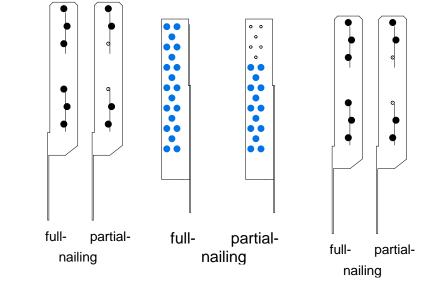


Figure D66-2: Nail pattern for HDUS and HDUL/R

	Minimum	Maximum
		All holes can be used by
HDUF	2	considering the minimum
HDUF	2	distance of the nails to the
		end of the timber
HDUS	Partial nailing 2x4 nails	full nailing, 2x6 nails
HDUL/R	Partial nailing 14 nails	full nailing, 20 nails

Table D66-3: Characteristic capacity

Model	R _{1,k} [kN]
HDUF250G	$\min \begin{cases} n_{ef} \times R_{lat,k} \\ 17,8kN/k_{md} \end{cases}$
HDUF40XG	11111 $17,8kN/k_{mod}$
HDUF400G	$\min\begin{cases} n_{ef} \times R_{lat,k} \\ 26,7 kN / k_{mod} \end{cases}$
HDUF60XG	$26,7 kN / k_{\rm mod}$
HDUS336G	$\min \begin{cases} C \times n_{per-side} \times R_{lat,k} \\ 23,1kN/k_{mod} \end{cases} or \min \begin{cases} D \times R_{lat,k} \\ 17,95kN/k_{mod} \end{cases}$ using the formula with "C", for contact between the hold down and the timber C=1,95 C=1,95 to the set of the set
HDUL380G	
HDUR380G	
HDUL465G	$\int C \times R_{lat,k}$ full nailing: C=11,7
HDUR465G	$\min \begin{cases} C \times R_{lat,k} & \text{full nailing: } C=11,7 \\ 21,4 \times R_{ax,k} & \text{partial nailing: } C=8,1 \end{cases}$
HDULxxG	(⁷ ax, x
HDURxxG	

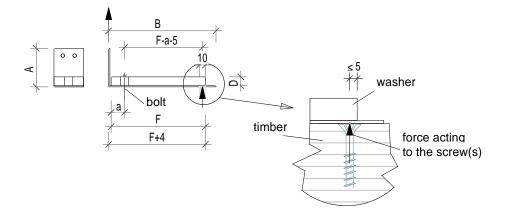
Table 5			factor	max
Model	R _{1,k} [kN]	R _{s,k} [kN]	k _r	n _s
HDBU163G with ¹⁾		13,7	1,55	2
HDBU220G with ^{1) 2)}		34,6	1,40	3
HDBU379G with ^{1) 2)}	$\min\left\{\frac{R_{s,k}}{k_{mod}}\right\}$	16,7	1,46	2
HDBW60G	$ \min \begin{cases} \sum_{R,k} & \text{mod} \\ V_{R,k} \times n_{sc} / k_{\text{mod}} \end{cases} $	19,8	2,00	2
HDBW160G		21,2	1,24	2
HDBW200G		23,4	1,23	3

It is imperativ:

 $R_{\mathrm{l},d} = rac{R_{\mathrm{l},k} imes k_{\mathrm{mod}}}{\gamma}$ with γ for timber.

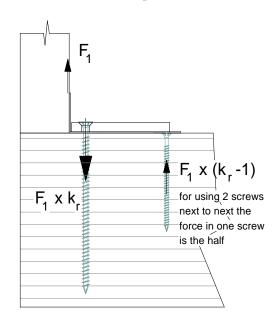
 $R_{bolt,d} \ge F_{1,d} \times k_r$

It shall be to check:


With:

- = n^{kef} effective number of nails with k_{ef} by EC 5 , table 8.1 n_{ef} $n_{per.-side}$ = number of nails on each side = characteristic Capacity of self-tapping screws (for EJOT JT2-3-5,5*25 $V_{R,k}$ = 6,4 kN) V_{R.k} = number of self-tapping screws n_{sc} = characteristic axial capacity of one nail in kN R_{ax,k} = characteristic withdrawal capacity of the (anchor)-bolt in kN R_{bolt,k} = characteristic lateral load-carrying capacity of one nail in kN R_{lat,k}
- k_r = factor to calculate the force in the bolt
- = capacity given in the table $R_{s,k}$

The capacity of a combination of an upper and lower part is given by the lower capacity of both parts.


Installation on a timber floor:

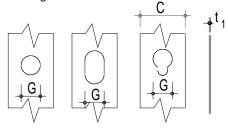
For the pressure area it may be possible to use screws for the pressure. In this case the calculation for the screws may be done separately according the following system:

The force for the screws at the end of the washer may be calculated with the given lever arms. The screws may be placed with a distance of 5 mm from the end of the washer.

The force axial to the screw is: $F_{ax,d} = F_{1,d} x (k_r - 1)$ as compression

The distances between the screws and to the edges are to be considered, as given in an approval or according EN1995 or a national standard.

A connection to the timber can also be occurring with a HDUFxx next

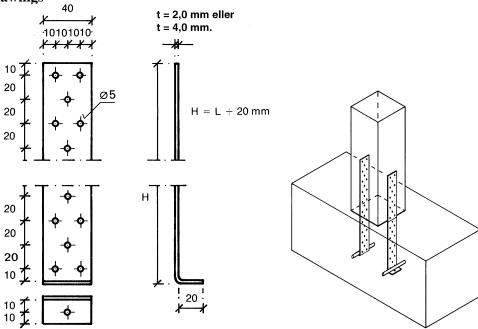

Larger holes are possible for bolts or other fasteners instead of a nail. For this cases the value $R_{1,k}$ shall be calculate as:

$$R_{1,k} = \min \begin{cases} n_{ef} \times R_{lat,k} \\ A_{net} \times 295 \frac{N}{mm^2} \\ \hline k_{mod} \end{cases}$$

With A_{net}= (C-G) x t₁

 $R_{\text{lat,k}}$ is the characteristic lateral load-carrying capacity of the used fastener.

The length of the HDUF may be selected as required for the used fastener.


HDUF: the hole pattern may be modified as showing below:

D67: BETA

	alternative names				
Product Name	UK	France	DK	D	
BETA					

Figure D67-1: Drawings

Table D67-1: Size specification

Туре	L	t
	mm	mm
BETA2/200	200	2,0
BETA2/300	300	2,0
BETA2/400	400	2,0
BETA2/500	500	2,0
BETA2/600	600	2,0
BETA4/600	200	4,0
BETA4/600	300	4,0
BETA4/600	400	4,0
BETA4/600	500	4,0
BETA4/600	600	4,0

Other lengths of the vertical flange are possible, for the same cross section the same capacity is given.

Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
	Or stainless steel as described	

Table D67-2: Material specification

Table D67-3: Characteristic capacity

The characteristic load-carrying capacity of one Concrete anchor strap is calculated as:

$$R_{1,k} = \min \begin{cases} A_{st} \times 0.37 \times f_{c,k}^{2/3} / k_{mod} \\ n_{ef} \times R_{lat,k} \\ 223 \times A_{gross} / k_{mod} \end{cases}$$

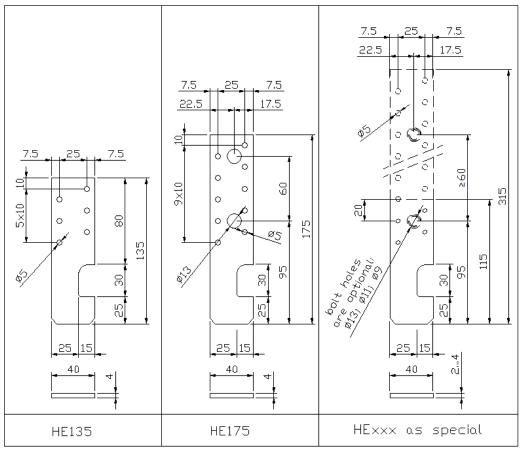
 $f_{c,k}$ = characteristic compression strength of the concrete according to EN 1992-1-1

 $n_{ef} = n^{k ef}$ effective number of nails with \tilde{k}_{ef} by EC 5, table 8.1

 $R_{lat,k} =$ characteristic lateral capacity of the connector nails

 $A_{gross} =$ gross area of the vertical flap in mm²

 $k_{mod} =$ load-duration factor


- $l_c =$ embedment length in concrete in mm
- $A_{st} =$ embedding face with a minimum l_c of 100mm, for a larger l_c it will be changed by: $A_{st} = A_{st(table)} / 100mm x l_c$

Туре	A _{gross} [mm²]	A _{st} [mm²]
BETA2/200	80	8400
BETA2/300	80	8400
BETA2/400	80	8400
BETA2/500	80	8400
BETA2/600	80	8400
BETA4/600	160	8800

D68: HE Anchor

	alternative names			
Product Name	UK	France	DK	D
HE				

Figure D68-1: Drawings

Table D68-1: Size specification

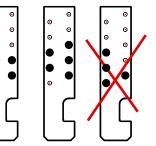

n/a

Table D68-2: Material specification

Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
	Or stainless steel as described	

Nail pattern:

	Minimum	Maximum
HE135	3	6
HE175	3	10
HE XXX	3	22

The size for type HE xxx may be in a range from 115 mm to 315 mm in steps of 20mm

The nails shall be placed alternating in height.

Table D68-3: Characteristic capacity

The characteristic load-carrying capacity of one HE Anchor is calculated as:

$$R_{1,k} = \min \begin{cases} C \times R_{lat,k} \\ 8,5kN/k_{\text{mod}} \times (t/4mm) \end{cases}$$

 $R_{lat,k}$ = characteristic lateral capacity of the connector nails / bolt M12

C = the factor from the following table

factor "C"

3.0

3.8

4.4

4.7

6.1

6.6

8.0

8.6

 $k_{mod} = \ \ load\text{-duration factor}$

 I_p

[mm²]

800

1944

2230

2688

4557

5450

8278

9813

t = thickness of HE anchor [mm]

T	a	b	le)	68	-4
			n	0)	

of nails

3

4

5

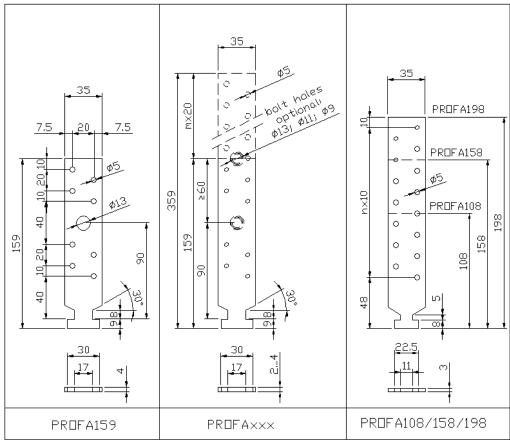
6

7

8

9

10


Table 68-5

no	l _p	faktor
of bolt	[mm²]	"C"
2 M12	1800	1,9

D69: PROFA

	alternative names			
Product Name	UK	France	DK	D
PROFA				

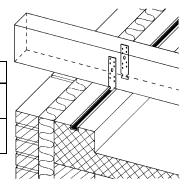
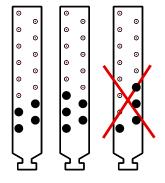

Figure D69-1: Drawings

Table D69-1: Size specification n/a

Table D69-2: Material specification

Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10346	Pre-galvanized steel min Z275 according to EN10346
	Or stainless steel as described	



Nail pattern:

	Minimum	Maximum
PROFA108	2	6
PROFA158	2	10
PROFA198	2	14
PROFA159	2	8
PROFA XXX	2	28

The size for type PROFA xxx may be in a range from 159 mm to 359 mm in steps of 20mm

The nails shall be placed alternating in height.

Table D69-3: Characteristic capacity

The characteristic load-carrying capacity of one Profile Anchor is calculated as:

$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 6,3kN/k_{mod} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 4,0mm)

$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 9,4kN/k_{mod} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 3,0mm)

$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 7,1kN/k_{mod} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 2,0mm in steel 1.4529)

$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 5,65kN/k_{mod} \end{cases}$$

n = number of the nails / connector screws; the nails will be used side by side.

- $R_{lat,k}$ = characteristic lateral capacity of the connector nail / bolt M12
- $k_{mod} = load$ -duration factor